
Math 1151 - Test 2 Solutions
1. Compute the derivatives of the following functions.

a) f(x) = esin(x
2)

Solution: Use the chain rule: f �(x) = esin(x
2) · cos(x2) · 2x = 2xesin(x

2) cos(x2).

b) r(t) = tan−1
�
ln(3t)

�

Solution: Use the chain rule: r�(t) = 1
1+(ln(3t))2 · 1

3t · 3 = 1
t(1+(ln(3t))2) .

c) g(x) = ex(2x+ 3)x

Solution: Logarithmic differentiation is necessary here, since the variable, x, appears in both
the base and power of the second factor. Let y = g(x) = ex(2x+ 3)x, so that

ln y = ln(ex(2x+ 3)x) = ln(ex) + ln((2x+ 3)x) = x ln e+ x ln(2x+ 3) = x+ x ln(2x+ 3).

Now, implicitly differentiate to obtain

1

y

dy

dx
= 1 + x · 2

2x+ 3
+ ln(2x+ 3) ⇒ dy

dx
= y

�
1 +

2x

2x+ 3
+ ln(2x+ 3)

�

⇒ g�(x) =
dy

dx
= ex(2x+ 3)x

�
1 +

2x

2x+ 3
+ ln(2x+ 3)

�
.

Note: the derivative rule d
dx(a

x) = (ln a)ax only applies when the base, a, is a constant, so this
rule does not apply here.

2. Compute the following limits.

a) lim
x→0+

√
x lnx

Solution: (=∗ indicates an application of L’Hospital’s Rule)

lim
x→0+

lnx

x−1/2
= 0 · (−∞) =∗ lim

x→0+

x−1

(−1/2)x−3/2
= −2 lim

x→0+
x1/2 = 0.

b) lim
x→∞

�
1 +

1

x

�2x

Solution: Let y = (1 + 1
x)

2x, so that ln y = ln
�
(1 + 1

x)
2x
�
= 2x ln(1 + 1

x). Computing the limit
of ln y, we get

lim
x→∞

ln y = lim
x→∞

2x ln
�
1 +

1

x

�
= ∞ · 0 = 2 lim

x→∞

ln
�
1 + 1

x

�

x−1

=∗ 2 lim
x→∞

1
1+ 1

x

· −1
x2

−1
x2

= 2 lim
x→∞

1

1 + 1
x

= 2 · 1 = 2.

So, the desired limit is then found as follows.

lim
x→∞

�
1 +

1

x

�2x
= lim

x→∞
y = lim

x→∞
eln y = elimx→∞ ln y = e2.



3I. Use linear approximations to estimate
√
15.9 by working through the following steps.

Ia) This number can best be estimated by using a linear approximation of the function
f(x) =

√
x at the point a = 16.

Ib) Given your answers to Ia, compute the best linear approximation - that is, the function
L(x) - to f at the point a.

Solution: L(x) = f �(a)(x− a) + f(a); f �(x) = 1
2
√
x
; f(a) = 4; f �(a) = 1

8 .

L(x) =
1

8
(x− 16) + 4

Ic) Estimate the number
√
15.9 using Ib.

Solution:

√
15.9 = f(15.9) ≈ L(15.9) =

1

8
(−0.1) + 4 = 4− 1

80
=

319

80
= 3.9875.

3II. Use differentials to approximate
√
15.9 by working through the following steps.

IIa) This number can best be estimated by using the differential of the function
y = f(x) =

√
x at the point x = 16 and with a change in x of dx = ∆x = −0.1.

IIb) Using part IIa, compute dy, the corresponding approximate change in y.
Solution: dy = f �(x)dx, f �(x) = 1

2
√
x
, f �(16) = 1

8 ⇒ dy = 1
8(−0.1) = − 1

80 .

IIc) Estimate the number
√
15.9 using IIb.

Solution: dy ≈ f(x+∆x)− f(x) ⇒ − 1
80 ≈ f(16− 0.1)− f(16) =

√
15.9− 4

⇒
√
15.9 ≈ 4− 1

80 = 319
20 = 3.9875.

4. Consider the curve given by the equation x4 − y ln y = 2xy. Find the equation of the normal
line to this curve at the point (0, 1).

Solution: Implicitly differentiating, we obtain

4x3 − y
1

y

dy

dx
− (ln y)

dy

dx
= 2x

dy

dx
+ 2y

⇒ dy

dx
(2x+ 1 + ln y) = 4x3 − 2y ⇒ dy

dx
=

4x3 − 2y

2x+ 1 + ln y
.

Thus, the slope of the tangent line at (0, 1) is −2, which means that the slope of the normal
line at that point is 1

2 . The equation of the normal line at (0, 1), then, is y − 1 = 1
2(x − 0) ⇒

y = 1
2x+ 1.



5. Consider the function f(x) = x4e−x. (NOTE: this problem extends to the following page.)

a) Compute the limits limx→−∞ f(x) and limx→∞ f(x).
Solution: First, limx→−∞ x4e−x = ∞ ·∞ = ∞ (i.e. both x4 and e−x go to ∞ as x → −∞).
For the other direction, we have

lim
x→∞

x4e−x = ∞ · 0 = lim
x→∞

x4

ex
=∗ lim

x→∞

4x3

ex
=∗ lim

x→∞

12x2

ex
=∗ lim

x→∞

24x

ex
=∗ lim

x→∞

24

ex
= 0.

b) Determine - if any - the horizontal asymptotes for this function.
Solution: From part b, we conclude that y = 0 is a horizontal asymptote of f . (Recall:
horizontal asymptotes correspond to finite limits at ±∞.)

c) Compute the first and second derivatives of f .
Solution:

f �(x) = x4(−e−x) + 4x3e−x = −x3e−x(x− 4)

f ��(x) = (−x3)(e−x)(1) + (−x3)(−e−x)(x− 4) + (−3x2)(e−x)(x− 4)

= x2e−x
�
−x+ x(x− 4)− 3(x− 4)

�

= x2e−x
�
x2 − 8x+ 12

�
= x2e−x(x− 2)(x− 6)

d) Find the critical points of f .
Solution: From part c, we see that f �(x) is defined for all x but equals 0 at x = 0, 4. These
are the two critical points.

e) Determine the intervals over which f is increasing and decreasing.
Solution: Testing sign of f � over the intervals determined by the critical points, we obtain

x < 0 =⇒ f �(−1) = −5e < 0; 0 < x < 4 =⇒ f �(1) = 3e−1 > 0

x > 4 =⇒ f �(5) = −125e−5 < 0

Thus, f is increasing on (0, 4), and f is decreasing on (−∞, 0) and (4,∞).

f) Determine the local maximum and minimum points of f .
Solution: Apply the First Derivative Test. Since the sign of f � changes from negative to
positive at x = 0, it follows that x = 0 is a local minimum point. Likewise, since the sign of
f � changes from positive to negative at x = 4, that point is a local maximum point.

g) Determine the points at which f ��(x) is undefined or equals 0.
Solution: From part c we see that f �� is defined for all x but equals 0 at x = 0, 2, and 6.

h) Determine the intervals over which f is concave up and down.
Solution: Use the concavity test; test the sign of the second derivative over the intervals
determined by the points found in part g.

x < 0 =⇒ f ��(−1) = 21e > 0; 0 < x < 2 =⇒ f ��(1) = 5e−1 > 0

2 < x < 6 =⇒ f ��(3) = −27e−3 < 0; x > 6 =⇒ f ��(7) = 49 · 4e−7 > 0

Thus, f is concave down on (2, 6) and concave up on (−∞, 2) and (6,∞).



i) Find all inflection points of f .
Solution: The concavity changes at x = 2 and x = 6. So, the inflection points are
(2, f(2)) ≈ (2, 2.17) and (6, f(6)) ≈ (6, 3.21).

j) Use this information - and any other easily obtainable information about f(x) - to give
an accurate sketch of the graph of f on the axes below.
Solution: In addition to the information obtained in parts a - i, notice, also, that f is a
positive function: x4e−x > 0 for every real number x. Thus, your graph cannot go below the
x-axis and still get full credit.

The asymptote must be clearly indicated at the right. The local maximum at x = 4
has function value f(4) ≈ 4.68, so it had to be close to that to get full credit.



6. A rancher wants to fence in a corral in the shape of a rectangle joined with a smaller square
as in the figure below, where the side-length of the square portion is one-half the side of the
rectangle it borders. There are only 1500 m of fencing available. (NOTE: the fencing will only
go along the outer boundary of the corral, which does not include the dotted line in the figure.)
Work through the following steps to determine the dimensions of the corral that will yield the
largest possible area given the stated conditions.

a) Label the relevant variables and clearly define the objective function (i.e. the quantity to
be optimized) and the constraint equation in terms of your variables.

Solution: The quantity to be maximized is the area, which is the sum of the rectangular
area and the square area. Noting the variables labeled above, we have A = xy + (12x)

2 =

xy+ x2

4 . The constraint is that there are only 1500 m of fencing, which limits the perimeter:
1500 = P = 2y + x+ x

2 + 3(x2 ) = 2y + 3x.

b) Using the constraint, reduce the objective function to a function of a single variable, and
determine an appropriate closed, finite length interval for the domain of this function as
it pertains to this specific problem.

Solution: Solving 1500 = 2y + 3x for y in terms of x, we have y = 750− 3
2x. Substitute

this into A = xy + x2

4 to obtain

A(x) = x
�
750− 3

2
x
�
+

x2

4
= 750x− 6

4
x2 +

1

4
x2 = 750x− 5

4
x2.

From the constraint equation 1500 = 2y + 3x, we see that x cannot be any larger than 500,
or else this equation could not hold (since x and y are both positive, being distances). Thus,
an obvious domain for A(x) is 0 ≤ x ≤ 500; any number larger than 500 would also work.

c) Compute the derivative and critical points of the function you found in part b.
Solution: A�(x) = 750− 5

2x, which is defined for all x. A�(x) = 0 ⇒ x = 2 · 750/5 = 300.

d) Determine the absolute maximum point of the function from part b on the interval you
chose as its domain.

Solution: Since we’ve defined A on a closed, finite length interval, we can use the standard
extreme value method: testing A(x) at the critical point and at the endpoints of [0, 500].

A(0) = 0, A(500) = 62, 500, A(300) = 112, 500

Thus, the absolute maximum of A over [0, 500] occurs at x = 300.

e) Determine the dimensions of the corral that yield the largest area subject to the given
conditions.

Solution: Since the area is maximized when x = 300, we substitute this into y = 750− 3
2x

to obtain y = 750− 3 · 150 = 750− 450 = 300 (i.e. the rectangluar area is actually square).



7. A water tank is in the shape of a cone with base radius 2 m and height 8 m. Initially, the
tank is full of water, but water begins flowing out of the bottom of the tank (where the vertex
of the cone is) at a constant rate of 2 m3/min. At what rate is the water level in the tank
changing when the depth of the water is half the height of the cone? (The volume of a cone of
base radius r and height h is V = π

3 r
2h.)

Solution: You should be able to obtain the following picture.

We know that dV
dt = −2, and we want to compute dh

dt when h = 4. Since we’re not given any
information about r, we can eliminate it from the volume formula using the usual similar
triangle method (“flatten” the cone to obtain two concentric similar triangles): this yields
2
r = 8

h ⇒ r = h
4 . Thus,

V =
π

3
· h

2

16
· h =

π

48
h3 =⇒ −2 =

dV

dt
=

π

16
h2

dh

dt
=⇒ dh

dt
= − 32

πh2
.

When h = 4, we get dh
dt = − 2

π m/min ≈ −0.637 m/min.

8. Compute (i.e derive - don’t just write it down) the derivative of f(x) = cos−1 x.
Solution: Let y = cos−1 x, so that cosy = x. Implicitly differentiate to obtain

−(sin y)
dy

dx
= 1 =⇒ dy

dx
= − 1

sin y
.

We know from the Pythagorean identity that sin2 y + cos2 y = 1, from which it follows that
sin y =

�
1− cos2 y =

√
1− x2 (because cos y = x).

Why can we take the positive square root? (This part was not required for the answer.) The
function f(x) = cos−1 - by definition (see the textbook) - is positive on its natural domain,
[−1, 1], and has range [0,π], which means that the variable y, above, is nonnegative and
takes on values between 0 and π. Since the sine function is nonnegative on [0,π], it follows
that sin y ≥ 0. Hence, we can take the positive square root.

It now follows that

f �(x) =
dy

dx
= − 1√

1− x2
.



BONUS: Choose one of the following to work. You will only receive credit for one
of them. Note the different point values.

B1. (6 bonus pts) State and prove the Mean Value Theorem. You may use Rolle’s
Theorem without proving it, but it must be clear where and how you use it.

Solution: Mean Value Theorem - If a function, f , is continuous on a closed interval [a, b]
and differentiable on (a, b), then there is a point, c, in (a, b) such that

f �(c) =
f(b)− f(a)

b− a
.

Proof Let m = f(b)−f(a)
b−a , and define a function g(x) = m(x− a) + f(a). Then define a

function h(x) = f(x)− g(x). The sum/difference of two continuous functions is continuous,
and the sum/difference of two differentiable functions is differentiable. Therefore, h is
continuous on [a, b] and differentiable on (a, b). Moreover, we have

h(a) = f(a)− g(a) = f(a)− (m · 0 + f(a)) = f(a)− f(a) = 0,

h(b) = f(b)− g(b) = f(b)−
�
m(b− a) + f(a)

�
= f(b)−

�
f(b)− f(a)

�
− f(a) = 0.

Thus, h satisfies the conditions of Rolle’s Theorem on [a, b], which means that there is some
point, c, in (a, b) such that h�(c) = 0. But h(x) = f(x)−g(x) ⇒ h�(x) = f �(x)−g�(x), which
implies that 0 = h�(c) = f �(c)− g�(c) ⇒ f �(c) = g�(c). But g is a linear function with slope
m, so g�(x) = m for any x, and, in particular, for x = c. Thus,

f �(c) = g�(c) = m =
f(b)− f(a)

b− a
.

B2. (8 bonus pts) Use the Mean Value Theorem to show that ex > x+ 1 for all positive
real numbers, x. (This is a form of the well-known Bernoulli inequality, and its proof is much
easier than it might look at first. HINT: ec > 1 for every positive real number, c, and the
Mean Value Theorem can be applied to f(x) = ex over any interval.)

Solution: Let f(x) = ex. We know that this function is continuous and differentiable on
the whole real line. Thus, the mean value theorem applies to this function over any interval,
[a, b]. Let x be any positive real number, and apply the mean value theorem to f over the
interval [0, x]. We can conclude that there is some point, c, in (0, x) such that

f �(c) =
f(x)− f(0)

x− 0
=

ex − e0

x
=

ex − 1

x
.

Recalling that f is its own derivative, we also know that f �(c) = ec, and the above equation
becomes

ec =
ex − 1

x
.

But c > 0 (because it lies between 0 and x), and, so, ec > 1. Applying this to the previous
equation, we see that

1 < ec =
ex − 1

x
.

Finally, since x is positive, we can multiply through this last inequality by x and it won’t
change the sign of the inequality. This gives us

x < ex − 1 =⇒ x+ 1 < ex.



B3. (10 bonus pts) Consider the function f(x) = (x+ 1)1/n(x− 1)(n−1)/n, where n is an
odd, positive integer greater than or equal to 3. Show that the graph of f has both a cusp
and a vertical tangent, and determine where they occur.

Solution: Differentiate f using the produt rule, and them simplify to obtain

f �(x) = (x+ 1)
1
n

�
n− 1

n
(x− 1)−

1
n

�
+ (x− 1)

n−1
n

�
1

n
(x+ 1)

1−n
n

�

=
(n− 1)(x+ 1)

1
n

n(x− 1)
1
n

+
(x− 1)

n−1
n

n(x+ 1)
n−1
n

(now get a common denominator)

=
(x+ 1)

n−1
n

(x+ 1)
n−1
n

· (n− 1)(x+ 1)
1
n

n(x− 1)
1
n

+
(x− 1)

1
n

(x− 1)
1
n

· (x− 1)
n−1
n

n(x+ 1)
n−1
n

=
(n− 1)(x+ 1) + (x− 1)

n(x− 1)
1
n (x+ 1)

n−1
n

=
nx+ n− 2

n(x− 1)
1
n (x+ 1)

n−1
n

We can now see that f � is undefined at x = ±1, and f �(x) = 0 at x = 2−n
n . Note that f is

defined at x = ±1 but f � is not. Thus, those are the candidates for the cusp and
vertical tangent locations. So, we compute the one-sided limits of f � at ±1. We find the
limits at 1 first. Note that the numerator of f � equals 2n− 2 at x = 1, which is positive
because n ≥ 3. In addition, the term (x+ 1)(n−1)/n equals 2(n−1)/n at x = 1. It is the term
(x− 1)1/n in the denominator that equals 0 and determines the sign of the limit. As
x → 1+, x− 1 is a small positive number.

lim
x→1+

nx+ n− 2

n(x− 1)
1
n (x+ 1)

n−1
n

=
2n− 2

n · 0+ · 2
n−1
n

=
2n− 2

0+
= ∞.

As x → 1−, x− 1 is a small negative number. Moreover, note also that the nth root
(x− 1)1/n is defined even in this case because n is odd. (If n were even, this would not be
the case.) Thus,

lim
x→1−

nx+ n− 2

n(x− 1)
1
n (x+ 1)

n−1
n

=
2n− 2

n · 0− · 2
n−1
n

=
2n− 2

0−
= −∞.

Hence, the graph of f has a cusp at x = 1 (because the signs of the limits differ).

Now we compute the limits at −1. Note that the numerator equals −2 at x = −1. The term,
(x−1)1/n, in the denominator equals the nth root of −2, (−2)1/n, which, again, is well-defined
and negative because n is odd. It’s the term (x+ 1)(n−1)/n that goes to 0. However, this

term is just
�
(x+ 1)1/n

�n−1
, or the (n− 1)st power of the nth root of x+ 1. Since n is odd,

n− 1 is even. Even powers are always positive. Thus, even though this term will go to 0 as
x → −1 from either side, it will always be positive, from either side. Hence, we have

lim
x→−1±

nx+ n− 2

n(x− 1)
1
n (x+ 1)

n−1
n

=
−2

n · (−2)
1
n · 0+

=
−2

−n2
1
n · 0+

= ∞.

Since the signs of the limits are the same, f has a vertical tangent line at x = −1.


