
Math 1151 - Test 1: Solutions
1. Compute the following limits.
Solution

a) lim
x→2

√
x+ 14

2x2
=

limx→2

√
x+ 14

limx→2 2x2
=

√
2 + 14

2 · 22
=

√
16

8
=

1

2

b) lim
x→2

(
3

2
(x−1)2ex

4−8x

)
=

3

2

(
lim
x→2

(x−1)2
)(

lim
x→2

ex
4−8x

)
=

3

2
(2−1)2e16−16 =

3

2
·1·e0 =

3

2

c) lim
x→4+

4x− 1

4− x

The numerator approaches 15 - a positive number - as x→ 4+. The denominator approaches 0
as x→ 4+, but it does so from the left. For instance, if you take a number close to but greater
than 4, say 4.001, and plug it into the denominator, you get −0.001. So the limit is −∞.

d) lim
x→−∞

7x6 − 4x3 + 9x2

6x7 − 3x3 + 9x2
= 0

This holds because the degree of the numerator is less than the degree of the denominator (a
theorem we had from class), meaning that the limits at ±∞ are both 0. Essentially, the growth
of the denominator for large x will dominate that of the numerator. You could have also derived
this directly as follows.

lim
x→−∞

7x6 − 4x3 + 9x2

6x7 − 3x3 + 9x2
= lim

x→−∞

x7
(

7
x −

4
x4

9
x5

)
x7
(

6− 3
x4

+ 9
x5

) =
limx→−∞

(
7
x −

4
x4

9
x5

)
limx→−∞

(
6− 3

x4
+ 9

x5

) =
0

6
= 0

e) lim
x→−1

√
x+ 2− x
x+ 1

This limit does not exist, even as an infinite limit. This follows because

lim
x→−1+

√
x+ 2− x
x+ 1

=
1 + 1

0+
=∞, where the 0+ means “approaching 0 from the right,” or positive

lim
x→−1−

√
x+ 2− x
x+ 1

=
1 + 1

0−
= −∞, where the 0− means “approaching 0 from the left,” or negative.

Thus, since the one-sided limits are not equal, the limit - even in the infinite sense - does not
exist.



2. Using the limit definition , find the equation of the line tangent to the graph of the
following function at the point corresponding to the given value of x.

f(x) =
1√

2x+ 1
, x = 4

Solution 1 f(4) = 1√
9

= 1
3

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1√
2x+2h+1

− 1√
2x+1

h

= lim
h→0

√
2x+1√
2x+1

1√
2x+2h+1

−
√
2x+2h+1√
2x+2h+1

1√
2x+1

h
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h→0

√
2x+ 1−

√
2x+ 2h+ 1

h
√

2x+ 1
√

2x+ 2h+ 1
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h→0

[√
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√
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h
√

2x+ 1
√

2x+ 2h+ 1
·
√

2x+ 1 +
√

2x+ 2h+ 1√
2x+ 1 +

√
2x+ 2h+ 1

]

= lim
h→0

2x+ 1− 2x− 2h− 1

h
√

2x+ 1
√

2x+ 2h+ 1
(√

2x+ 1 +
√

2x+ 2h+ 1
)

= lim
h→0

−2h

h
√

2x+ 1
√

2x+ 2h+ 1
(√

2x+ 1 +
√

2x+ 2h+ 1
)

= lim
h→0

−2
√

2x+ 1
√

2x+ 2h+ 1
(√

2x+ 1 +
√

2x+ 2h+ 1
)

=
−2

√
2x+ 1

√
2x+ 1

(√
2x+ 1 +

√
2x+ 1

) =
−2

(2x+ 1) · 2
√

2x+ 1
=

−1

(2x+ 1)3/2

=⇒ f ′(4) =
−1

93/2
= − 1

27
=⇒ tangent line is y − 1

3
= − 1

27
(x− 4) or y = − 1

27
x+

13

27

Solution 2

f ′(4) = lim
x→4

f(x)− f(4)

x− 4
= lim

x→4

1√
2x+1

− 1
3

x− 4
= lim

x→4

3−
√
2x+1

3
√
2x+1

x− 4
= lim

x→4

3−
√

2x+ 1

3(x− 4)
√

2x+ 1

= lim
x→4

[
3−
√

2x+ 1

3(x− 4)
√

2x+ 1
· 3 +

√
2x+ 1

3 +
√

2x+ 1

]
= lim

x→4

9− 2x− 1

3(x− 4)
√

2x+ 1
(

3 +
√

2x+ 1
)

= lim
x→4

−2(x− 4)

3(x− 4)
√

2x+ 1
(

3 +
√

2x+ 1
) = lim

x→4

−2

3
√

2x+ 1
(

3 +
√

2x+ 1
)

=
−2

3 · 3(3 + 3)
= − 2

54
= − 1

27
tangent line equation is same as above



3. Determine all vertical and horizontal asymptotes (if any exist) for the following function.

f(x) =
3x5 + 15x4 + 18x3

12x5 − 24x4 − 96x3

Solution

First, note that the degrees of the numerator and denominator are the same. Thus, limx→±∞ f(x) =
3
12 = 1

4 . This shows that y = 1
4 is a horizontal asymptote for this function. Next, note that

f(x) =
3x3(x2 + 5x+ 6)

12x3(x2 − 2x− 8)
=

x3(x+ 3)(x+ 2)

4x3(x+ 2)(x− 4)
.

Thus, f is undefined at x = 0, −2, and 4; these are the candidates for possible vertical asymp-
totes. Vertical asymptotes are defined not by the fact that terms cancel out in the function
expression - which is simply a consequence of the form of rational functions but does not hold
in general - but by the fact that the limits at those points, from either side, are ±∞.

lim
x→0

f(x) = lim
x→0

x+ 3

4(x− 4)
= − 3

16
→ x = 0 is not a vertical asymptote

lim
x→−2

f(x) = lim
x→−2

x+ 3

4(x− 4)
= − 1

24
→ x = −2 is not a vertical asymptote

lim
x→4+

f(x) = lim
x→4+

x+ 3

4(x− 4)
=

7

4 · 0+
=∞

lim
x→4−

f(x) = lim
x→4−

x+ 3

4(x− 4)
=

7

4 · 0−
= −∞ (you only need one of these last two)

Thus, x = 4 is the only vertical asymptote of f .



4. Compute the derivatives of the following functions. (You do not need to use the limit definition.)

Solutions

a) f(x) = x4 − 6x3 + 2x2 − 7x+ 20

f ′(x) = 4x3 − 18x2 + 4x− 7, by the summation/difference, constant multiple, and power rules

b) u(t) = 4t2et cos t

u′(t) = (4t2et)
d

dt
(cos t) + (cos t)

d

dt
(4t2et) = −4t2et sin t+ (cos t)(4t2et + 8tet) by product rule

Or, if you applied the general product rule for any number of factors, you could also compute

u′(t) = 4t2et
d

dt
(cos t) + (4t2 cos t)

d

dt
(et) + (et cos t)

d

dt
(4t2) = −4t2et sin t+ 4t2et cos t+ 8tet cos t.

c) r(v) =
(2v + 1) sin v

3v3

r′(v) =
3v3 d

dv

(
(2v + 1) sin v

)
−
(

(2v + 1) sin v
)
· ddv (3v3)

9v6

=
3v3
(

(2v + 1) cos v + 2 sin v)
)
− 9v2(2v + 1) sin v

9v6

=
v(2v + 1) cos v − (4v + 3) sin v

3v4

d) y =
3

2x5/3
− x3/5 − e−x +

1

2
cotx

First rewrite: y =
3

2
x−5/3 − x3/5 − e−x +

1

2
cotx

=⇒ y′ =
3

2
· −5

3
x−8/3 − 3

5
x−2/3 − (−e−x) +

1

2
(− csc2 x) = − 5

2x8/3
− 3

5x2/3
+ e−x − 1

2
csc2 x



5. Using the precise definition of a limit (i.e. the “epsilon-delta definition”), show that

lim
x→2

(x3 − 1) = 7.

Solution

Recall that to show limx→a f(x) = L, you must show the following: given any ε > 0, there
is a δ > 0 such that |f(x) − L| < ε whenever 0 < |x − a| < δ, or - equivalently - such that
−ε < f(x)− L < ε whenever −δ < x− a < δ, x 6= a. The way to do this is to work backwards
from what you want to be true (i.e. −ε < f(x) − L < ε) until you obtain the inequality
−δ < x − a < δ for an appropriate choice of δ (which you must make). Then, you should be
able to reverse your work to show that the δ you’ve chosen does, indeed, work.

So, let ε > 0 be given. In this case, f(x) = x3− 1, L = 7, and a = 2. We want the following:
−ε < (x3 − 1)− 7 < ε.

−ε < x3 − 8 < ε =⇒ 8− ε < x3 < 8 + ε =⇒ 3
√

8− ε < x < 3
√

8 + ε

This last step is valid and does not requre any further explanation or bounds on ε because
cubed roots are defined for all real numbers, positive or negative, and the cubed root function
is increasing (so if a < b, then 3

√
a < 3
√
b; this is why I chose a cubed root limit - to simplify the

algebra).
NOTE: You canNOT split up the cubed root terms in the above inequality as 3

√
8 ± 3
√
ε =

2± 3
√
ε. It is NOT true that 3

√
a± b = 3

√
a± 3
√
b.

Now, remember that we’re working towards the inequality −δ < x − a < δ, where a = 2 in
this case. So, we want the middle of the above inequality to be x − 2. Subtracting 2 from all
three parts, we obtain

3
√

8− ε− 2 < x− 2 < 3
√

8 + ε− 2.

Finally, we choose δ to be the smallest (in absolute value) of the two terms in the right and left
sides of this last inequality. Clearly, 3

√
8− ε− 2 is less than 3

√
8 + ε− 2 (because 8− ε < 8 + ε).

So, we choose δ = | 3
√

8− ε− 2|.
I didn’t require this for full credit, but you can check your work by starting with the inequality

3
√

8− ε − 2 < x − 2 < 3
√

8− ε − 2, using the fact that 3
√

8− ε < 3
√

8 + ε, and reversing your
algebraic steps.

6. Consider the function

f(x) =


3x+4
2x , x > 2

1
2x+ 3

2 , x < 2

2, x = 2.

Solution
a) Show that f is not continuous at x = 2.

lim
x→2+

f(x) = lim
x→2+

3x+ 4

x
=

5

2
, lim

x→2−
f(x) = lim

x→2−

(1

2
x+

3

2

)
=

5

2
=⇒ lim

x→2
f(x) =

5

2

But f(2) = 2 6= 5
2 , so f is not continuous at 2 (i.e. f(2) 6= limx→2 f(x)).

b) Is this discontinuity essential or removable? Why? If it is removable, determine how you
could redefine f to make it continuous at x = 2.

It is removable because limx→2 f(x) exists. Redefining f(2) to be 5
2 would make it continuous.



7. Show that f ′(0) = 0 for the function below. Explicitly reference any theorems you use.

f(x) =

{
x5 cos

(
π4

2x3

)
, x 6= 0

0, x = 0

Solution The product rule does not apply here. The product rule applies to a product f(x) =
g(x)h(x) only when g and h are differentiable at the point in question. The function cos(π4/2x3)
is not only not differentiable at 0, it is not even continuous there. Moreover, the fact that f(0) = 0
does not mean that you can apply the “constant derivative rule” and claim that the derivative
of 0 is 0. Derivatives (look back at the limit definition) depend on the function values at and
nearby the point in question. The function f is not constant on any interval around 0. The
correct way to proceed is as follows.

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
= lim

x→0

x5 cos
(
π4

2x3

)
x

= lim
x→0

x4 cos

(
π4

2x3

)

The limit of cos(π4/2x3) at 0 does not exist, so you cannot apply the product rule for limits.
You have to use the Squeezing Theorem. We know that cos θ lies in between −1 and 1 for any
real number θ. Thus,

−1 ≤ cos

(
π4

2x3

)
≤ 1 =⇒ −x4 ≤ x4 cos

(
π4

2x3

)
≤ x4.

lim
x→0

(−x4) = lim
x→0

x4 = 0. So, by the Squeezing Theorem, lim
x→0

x4 cos

(
π4

2x3

)
= 0

But, as we derived above, this limit is precisely f ′(0). Thus, f ′(0) = 0.

8. If an archer shoots an arrow directly upward from the surface of the earth with an initial
velocity of 50 m/s, its height above the ground at t seconds is given (approximately) by h(t) =
50t− 5t2 m.
Solution

a) With what velocity will the arrow hit the ground?

h(t) = 0 ⇒ 50t− 5t2 = 0 ⇒ 5t(10− t) = 0 ⇒ t = 0, 10 ⇒ arrow hits ground at 10 s

v(t) = h′(t) = 50− 10t ⇒ v′(10) = 50− 100 = −50 m/s

b) At what time during its flight does the arrow reach the peak of its ascent?

v(t) = 0 ⇒ 50− 10t = 0 ⇒ t = 50/10 = 5 s

d) What is the arrow’s acceleration when it is halfway through its descent?

a(t) = h′′(t) = v′(t) = −10 ⇒ a(t) is constant, the same for all t.

So, a(t) = −10 m/s2 for any t.



9. Show that the equation
√

2x2 − 2x+ 2 + x = 2 has a solution between 0 and 1.
Solution

Let f(x) =
√

2x2 − 2x+ 2 + x − 2. Then we want to show that the equation f(x) = 0 has
a solution between 0 and 1. The function f is continuous on [0, 1] because 1)

√
2x2 − 2x+ 2

is the composition of a root function and a polynomial that is always positive (thus, the root
is well-defined - and root functions are continuous where they are well-defined), 2) x − 2 is a
polynomial function, which is continuous everywhere, and 3) f is the sum of these two functions,
and the sum of continuous functions is also continuous.

Moreover, note that f(0) =
√

2 − 2 < 0 and f(1) =
√

2 − 1 > 0. Thus, f(0) < 0 < f(1).
Since 0 lies between the endpoint function values, and since f is continuous on [0, 1], we can
apply the Intermediate Value Theorem on this interval to conclude that there is some number
c in (0, 1) such that f(c) = 0. But this is precisely the equation we wanted to solve, so c is the
desired solution.

10. The first figure below depicts the graph of the derivative, f ′, of a function, f . On the axes
below it, give a sketch of what a graph of f might look like.

f must be decreasing for x < −3, 2.5 < x < 4, increasing for −3 < x < 2.5, x > 4, have
horizontal tangent lines at x = −3, 2.5, and 4. The flat, nonzero piece in the middle corresponds
to a linear piece of f with a positive slope, but I counted that as a bonus point; it wasn’t essential
for the problem.



BONUS: The derivative of the inverse tangent function, f(x) = tan−1 x, is f ′(x) = 1
1+x2

. Use
the derivative (not the graph) to “prove” (a brief explanation and a computation or two will
suffice) that the inverse tangent function has a horizontal asymptote.

Solution The actual proof of this result (and graphs do not constitute proofs) uses results that
are not difficult but are beyond what we cover in this course. The intuitive proof I was looking
for was very simple. The derivative of f(x) = tan−1 x is f ′(x) = 1

1+x2
. Horizontal asymptotes

correspond to limits at ±∞. So, look first at the limit of the derivative at∞ (the same reasoning
holds for −∞, also, but you were only asked to show that at least one horizontal asymptote
existed).

lim
x→∞

1

1 + x2
= 0 because f ′ is rational with degree of the top < degree of the bottom

Thus, f ′(x) goes to 0 as x → ∞. But 0 derivatives correspond to horizontal tangent lines, or
“flat spots” on the graph. Thus, the fact that the derivative approaches 0 as x → ∞ means
that the tangent lines to the graph of f are becoming closer and closer to being horizontal lines
the further out on the real line (in the positive direction) you travel. Intuitively, the graph of
f is “leveling off;” it is becoming flatter (but not precisely flat) because the tangent line slopes
(i.e. f ′(x)) are approaching 0. Thus, since the graph of f is leveling off, it must be approaching
some fixed value. It can’t continue increasing without bound, or else the derivative would not
be going to 0. And since 1

1+x2
> 0 for all x, the graph of f is never decreasing. Thus, f must

approach some fixed real number at ∞, and this will indicate a horizontal asymptote.


