Test	Total	150	pts

Name

Final Exam Calculus II Drs. Clemons & Norfolk May 8, 2006

Show all work. Partial credit will be given for correct reasoning.

(1) Evaluate the following integrals. State if it is an improper integral:

(a)
$$\int_0^1 \frac{1}{\sqrt{x^2 + 4x + 5}} dx$$

12 pts

(b) $\int_{1}^{3} \frac{x+3}{x^2-3x} \, dx$

12 pts

(c) $\int 3x2^x dx$

12 pts

Pg 1 Tot: 36

Page 2 of 5

Name
$$\frac{}{\int \frac{\sec^2 t}{1 - \tan t} \, dt}$$

12 pts

(e)
$$\int \sin^3 x \cos^8 x \, dx$$

12 pts

(f)
$$\int \sqrt{2-x^2} \, dx$$

12 pts

Pg 2 Tot: 36

(2) Sketch the region inside $r=2+2\sin\theta$ and outside r=3, then Set-up the integral representing the area. **Do Not Solve Your Integral.**

10 pts

(3) Convert the polar equation, $r = \frac{10}{3 - 2\cos\theta}$, to a cartesian equation and identify the conic section, including any centers, major/minor axes, intercepts and asymptotes.

 $10 \mathrm{\ pts}$

Pg 3 Tot: 20

- (4) Given the parametric curve $x(t)=t^2,$ $y(t)=t-\frac{1}{3}t^3,$ for $0\leq t\leq 1,$ (a) Calculate $\frac{d^2y(t)}{dx^2}$

10 pts

Set-up , but do not evaluate the integrals necessay to calculate

(b) the arclength for $0 \le t \le 1$.

8 pts

(c) the area of the surface generated by revolving the parametric curve about the x-axis.

(d) the area under the parameterized curve.

Pg 4 Tot: 34

(4) Find the interval of convergence of the power series $\sum_{n=2}^{\infty} \frac{\ln n}{n} (x-1)^n$. Determine the convergence or divergence at the endpoints.

12 pts

(5) Write a power series expansion, $\sum_{n=0}^{\infty} A_n x^n$ and state the radius of convergence for (a) $\ln(1+x)$

4 pts

(b) $\frac{x}{3+2x}$

4 pts

(c) $\ln(1+x) + \frac{x}{3+2x}$

4 pts

Pg 5 Tot: 24