## PreCalculus Review

## Review Questions

1. The following transformations are applied (in the given order) to the graph of $y=x^{3}$.
I. Vertical Stretch by a factor of 3 .
II. Horizontal shift to the right by 2 units.
III. Vertical shift up by 4 units.

What is the equation of the transformed graph?
2. Solve for $x$ : $\frac{x^{2}+2 x-8}{x^{2}-x}<0$.
3. Use absolute value notation to write an inequality that represents the statement: " $x$ is within 3 units of 2 on the real line".
4. Solve the inequality $|3-4 x| \geq 5$. Express your answer in interval notation.
5. Use the definition of absolute value to write $f(x)=|3(x-1)-2|$ as a piecewise-defined function which does not contain absolute values.
6. Consider the function $f(x)=4 x^{2}-8 x+1$. If possible, solve the following problems algebraically. Check your results graphically.
(a) Complete the square to write this polynomial in standard form.
(b) Draw a complete graph, using the standard form found in (a).
(c) State which transformations (shifts, stretches, etc.) that must be applied to the graph of $y=g(x)=x^{2}$ to obtain the graph of $y=f(x)$.
7. Let $f(x)=\left\{\begin{array}{lll}x+1 & \text { if } & x<0 \\ x-1 & \text { if } & 0 \leq x\end{array}\right.$ and $g(x)=\left\{\begin{array}{lll}-x & \text { if } & x \leq 1 \\ x-1 & \text { if } & 1<x\end{array}\right.$ Determine:
(a) $(f-g)(x)$.
(b) $\left(\frac{f}{g}\right)(x)$.
8. Let $f(x)=\sqrt{x}-3$ and $g(x)=x^{2}+x+\frac{1}{4}$.
(a) Determine the domain and range of both $f$ and $g$.
(b) Determine $f(g(x))$, including its domain.
(c) Determine $g(f(x))$, including its domain.
9. Let $P(x)=x^{5}-3 x^{4}-9 x+27$.
(a) Find all rational roots of $P(x)$.
(b) Find all real linear factors of $P(x)$.
(c) Find any irreducible quadratic factors of $P(x)$.
(d) Solve $P(x) \geq 0$.
10. Let $r(x)=\frac{x^{3}+2 x^{2}-2 x-3}{x^{2}-4 x-5}$.
(a) What is the domain of this function?
(b) Find all zeros of this function ( $x$-intercepts).
(c) Find all vertical asymptotes of this function.
(d) Determine where $r$ is positive, and where it is negative.
(e) Determine any horizontal and slant asymptotes.
(f) Draw a complete graph of $y=r(x)$.
(g) Solve $r(x)<0$.
11. Solve for $x$ : $48=\frac{2}{x-1}+\frac{9}{x+1}+\frac{253}{x+5}$.
12. Use the unit circle definition of the standard trigonometric functions to explain the following:
(a) $\sin ^{2} t+\cos ^{2} t=1$.
(b) $\sin (\pi-t)=\sin t$.
(c) $\tan (t+\pi)=\tan t$.
(d) The range of $f(t)=\sin t$ is $[-1,1]$.
(e) The domain of $g(t)=\tan t$ is $t \neq \frac{(2 k+1) \pi}{2}$ for integer $k$, i.e. all odd multiples of $\frac{\pi}{2}$.
(f) $h(t)=\cos t$ decreases for $t \in(0, \pi)$. Where does it increase?
(g) $\sec ^{2} t-\tan ^{2} t=1$.
13. For the function $f(x)=1+5 \cos \left(2 x-\frac{\pi}{2}\right)$, determine the following:
(a) $\operatorname{Domain}(f)$.
(b) Range ( $f$ ).
(c) A complete period for $f$.
(d) The amplitude of $f$.
(e) The phase shift of $f$.
(f) The zeros of $f$ in the interval $[-2 \pi, 2 \pi]$.
(g) The graph of $f$, showing two complete periods.
14. Solve the following equations exactly for $x \in[-2 \pi, 2 \pi]$ :
(a) $\sin x \leq-\frac{1}{2}$.
(b) $3 \sec ^{2} x=4$.
(c) $\tan x=-1$.
(d) $2 \sin ^{2}(2 x)-1=0$.
15. Prove that

$$
\frac{\sin (x+h)-\sin x}{h}=\sin x\left(\frac{\cos h-1}{h}\right)+\cos x\left(\frac{\sin h}{h}\right), \text { for all } h \neq 0 .
$$

16. Find $\delta$ such that $\sqrt{2} \sin x-\cos x=\sqrt{3} \sin (x+\delta)$ for all $x$.
17. Find $A$ such that $\sqrt{2} \sin x+\cos x=A \sin \left(x+\cos ^{-1} \frac{\sqrt{2}}{\sqrt{3}}\right)$, for all $x$.
18. Find $A$ and $\delta$ such that $\sin x+\sqrt{2} \cos x=A \sin (x+\delta)$ for all $x$.
19. Solve the following equations exactly:
(a) $\sin ^{2} t+\tan t+\cos ^{2} t=2,0 \leq t \leq 2 \pi$.
(b) $\left(\sec \theta-\frac{1}{2}\right)(2 \cos \theta-\sqrt{3})=0,0 \leq \theta \leq 2 \pi$.
(c) $\cos (2 x)+\cos x+1=0$.
(d) $4 \sin x \cos x=\sqrt{3},-2 \pi<x<2 \pi$.
(e) $\sin (3 x)-\cos (3 x)=0$.
(f) $\sqrt{2} \sec t=-2,0 \leq t \leq 2 \pi$.
(g) $\sin t-\cos t=\frac{1}{3}$. (Hint: Write this in the form $A \sin (t+\alpha)=\frac{1}{3}$ ).
(h) $\tan ^{2} t-3 \tan t=1,-2 \pi \leq t \leq 2 \pi$.

## Solutions

1. $y=3(x-2)^{3}+4$.
2. $(-4,0) \cup(1,2)$.
3. $|x-2| \leq 3$.
4. $\left(-\infty,-\frac{1}{2}\right] \cup[2, \infty)$.
5. $f(x)=\left\{\begin{array}{lll}-3 x+5 & \text { if } & x<\frac{5}{3} \\ 3 x-5 & \text { if } & \frac{5}{3} \leq x\end{array}\right.$
6. (a) $f(x)=4(x-1)^{2}-3$.
(b) Your graph should be a parabola with vertex at $(1,-3)$, which opens up. The graph crosses the $x$-axis at $x=1 \pm \frac{\sqrt{3}}{2}$.
(c) Vertical stretch by a factor of 4; vertical shift 3 units down; horizontal shift 1 unit to the right.
7. (a) $(f-g)(x)=\left\{\begin{array}{cll}2 x+1 & \text { if } & x<0 \\ 2 x-1 & \text { if } & 0 \leq x \leq 1 \\ 0 & \text { if } & 1<x\end{array}\right.$
(b) $\left(\frac{f}{g}\right)=\left\{\begin{array}{lll}-\frac{x+1}{x} & \text { if } & x<0 \\ \frac{1-x}{x} & \text { if } & 0 \leq x \leq 1 \\ 1 & \text { if } & 1<x\end{array}\right.$
8. (a) Note: $g(x)=\left(x+\frac{1}{2}\right)^{2}$, so Domain $(f)=[0, \infty)$, Range $(f)=[-3, \infty)$, Domain $(g)=$ $(-\infty, \infty)$, Range $(g)=[0, \infty)$.
(b) $f(g(x))=\sqrt{g(x)}-3=\left|x+\frac{1}{2}\right|-3,-\infty<x<\infty$.
(c) $g(f(x))=\left(\sqrt{x}-\frac{5}{2}\right)^{2}=x-5 \sqrt{x}+\frac{25}{4}, x \geq 0$.
9. (a) $x=3$.
(b) $(x-3),(x-\sqrt{3}),(x+\sqrt{3})$.
(c) $\left(x^{2}+3\right)$.
(d) $[-\sqrt{3}, \sqrt{3}] \cup[3, \infty)$.
10. (a) $x \neq-1,5$.
(b) $x=\frac{-1 \pm \sqrt{13}}{2}$.
(c) Vertical asymptote $x=5$. Note that $x=-1$ is a removeable discontinuity.
(d) Positive on $\left(\frac{-1-\sqrt{13}}{2},-1\right) \cup\left(-1, \frac{-1+\sqrt{13}}{2}\right) \cup(5, \infty)$; Negative on $\left(-\infty, \frac{-1-\sqrt{13}}{2}\right) \cup$ $\left(\frac{-1+\sqrt{13}}{2}, 5\right)$.
(e) Slant asymptote $y=x+6$ (or $y=x$ ).
(f) Be sure to include at least $-10<x<15$, noting the vertical asymptote, and the "hole" in the graph at $x=-1$.
(g) $\left(-\infty, \frac{-1-\sqrt{13}}{2}\right) \cup\left(\frac{-1+\sqrt{13}}{2}, 5\right)$.
11. $x=\frac{1}{2}, \pm \sqrt{2}$.
12. (a) The point $(\cos t, \sin t)$ is on the unit circle $x^{2}+y^{2}=1$.
(b) $\pi-t$ and $t$ are complementary angles, that is, they have the same reference angle.
(c) The straight line with angle $t$ cuts two places on the unit circle, giving the same value for $\tan (t+\pi)$ and $\tan t$.
(d) $\sin t$ is just the $y$-coordinate on the unit circle.
(e) At odd multiples of $\frac{\pi}{2}$, the line is vertical, and so the slope $(\tan t)$ is undefined.
(f) $\cos t$ is the $x$-coordinate, which decreases from 1 to -1 as $t$ goes from 0 to $\pi$. As $t$ goes from $\pi$ to $2 \pi$, this coordinate increases from -1 back to 1 .
(g) Divide the Pythagorean identity in part (a) by $\cos t$, and use the definitions of $\tan t$ and $\sec t$.
13. (a) Domain $(f)=(-\infty, \infty)$.
(b) Range $(f)=[-4,6]$.
(c) $[0, \pi]$.
(d) 5 .
(e) $\frac{\pi}{4}$.
(f) Two solutions are $\alpha=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(-\frac{1}{5}\right)=\frac{3 \pi}{4}-\frac{1}{2} \tan ^{-1}(2)$, and $\beta=\frac{5 \pi}{4}-\frac{1}{2} \cos ^{-1}\left(-\frac{1}{5}\right)=\frac{3 \pi}{4}+\frac{1}{2} \tan ^{-1}(2)$, which satisfy $\frac{\pi}{2}<\alpha, \beta<\pi$, so the full set is $\alpha-2 \pi, \beta-2 \pi, \alpha-\pi, \beta-\pi, \alpha, \beta, \alpha+\pi, \beta+\pi$.
14. (a) $\left[-\frac{5 \pi}{6},-\frac{\pi}{6}\right] \cup\left[\frac{7 \pi}{6}, \frac{11 \pi}{6}\right]$.
(b) $\left\{-\frac{11 \pi}{6},-\frac{7 \pi}{6},-\frac{5 \pi}{6},-\frac{\pi}{6}, \frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}\right\}$.
(c) $\left\{-\frac{5 \pi}{4},-\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{7 \pi}{4}\right\}$.
(d) $\left\{ \pm \frac{\pi}{8}, \pm \frac{3 \pi}{8}, \pm \frac{5 \pi}{8}, \pm \frac{7 \pi}{8}, \pm \frac{9 \pi}{8}, \pm \frac{11 \pi}{8}, \pm \frac{13 \pi}{8}, \pm \frac{15 \pi}{8}\right\}$.
15. Use the formula : $\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$.
16. $\delta=2 \pi-\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)=\tan ^{-1}\left(-\frac{1}{\sqrt{2}}\right) \neq-\frac{\pi}{4}$
17. $A=\sqrt{3}$.
18. $A=\sqrt{3}, \delta=\sin ^{-1}\left(\sqrt{\frac{2}{3}}\right)=\tan ^{-1}(\sqrt{2})$.
19. (a) $\left\{\frac{\pi}{4}, \frac{5 \pi}{4}\right\}$.
(b) $\left\{\frac{\pi}{6}, \frac{11 \pi}{6}\right\}$.
(c) $\frac{\pi}{2}+2 \pi n, \frac{3 \pi}{2}+2 \pi n, \frac{2 \pi}{3}+2 \pi n, \frac{4 \pi}{3}+2 \pi n, n$ an integer.
(d) $\left\{-\frac{11 \pi}{6},-\frac{5 \pi}{3},-\frac{5 \pi}{6},-\frac{2 \pi}{3}, \frac{\pi}{6}, \frac{\pi}{3}, \frac{7 \pi}{6}, \frac{4 \pi}{3}\right\}$.
(e) $x=\frac{\pi}{12}+\frac{\pi n}{3}, n$ an integer.
(f) $\frac{3 \pi}{4}, \frac{5 \pi}{4}$.
(g) $\frac{\pi}{4}+\sin ^{-1}\left(\frac{1}{3 \sqrt{2}}\right)+2 \pi n=\frac{\pi}{4}+\tan ^{-1}\left(\frac{1}{\sqrt{17}}\right)+2 \pi n$, and
$\frac{5 \pi}{4}-\sin ^{-1}\left(\frac{1}{3 \sqrt{2}}\right)+2 \pi n=\frac{5 \pi}{4}-\tan ^{-1}\left(\frac{1}{\sqrt{17}}\right)+2 \pi n, n$ an integer.
(h) Let $\alpha=\tan ^{-1}\left(\frac{3+\sqrt{13}}{2}\right), \beta=\tan ^{-1}\left(\frac{3-\sqrt{13}}{2}\right)$.

The solutions are $\alpha-2 \pi, \alpha-\pi, \alpha, \alpha+\pi, \beta-\pi, \beta, \beta+\pi, \beta+2 \pi$.

## Completing the Square

A very useful tool in your algebra arsenal is completing the square, that is, to re-write a quadratic expression as follows:

$$
a x^{2}+b x+c=a(x-h)^{2}+k
$$

We start by dividing by $a \neq 0$ :

$$
a x^{2}+b x+c=a\left[x^{2}+\frac{b}{a} x\right]+c,
$$

then use the identity $(\alpha+\beta)^{2}-\beta^{2}=\alpha^{2}+2 \alpha \beta$ to write

$$
\begin{aligned}
a\left[x^{2}+\frac{b}{a} x\right]+c & = \\
& =a\left[\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right]+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a}
\end{aligned}
$$

example: $2 x^{2}-3 x+5$
$=2\left(x^{2}-\frac{3}{2} x\right)+5$
$=2\left[\left(x-\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}\right]+5$
$=2\left(x-\frac{3}{4}\right)^{2}-\frac{9}{8}+5$
$=2\left(x-\frac{3}{4}\right)^{2}+\frac{31}{8}$.
example: $\frac{1}{2} x^{2}+4 x+3$
$=\frac{1}{2}\left(x^{2}+8 x\right)+3$
$=\frac{1}{2}\left[(x+4)^{2}-4^{2}\right]+3$
$=\frac{1}{2}(x+4)^{2}-8+3=\frac{1}{2}(x+4)^{2}-5$.
example: $7-5 x-2 x^{2}=-2 x^{2}-5 x+7$
$=-2\left[x^{2}+\frac{5}{2} x\right]+7$
$=-2\left[\left(x+\frac{5}{4}\right)^{2}-\left(\frac{5}{4}\right)^{2}\right]+7$
$=-2\left(x+\frac{5}{4}\right)^{2}+\frac{25}{8}+7$
$=-2\left(x+\frac{5}{4}\right)^{2}+\frac{81}{8}$.
example: Find the centre and radius of the circle with equation $x^{2}-6 x+y^{2}+4 y=12$. $x^{2}-6 x+y^{2}+4 y=(x-3)^{2}-3^{2}+(y+2)^{2}-2^{2}=12$, from which $(x-3)^{2}+(y+2)^{2}=25$, giving a centre of $(3,-2)$, radius 5 .

## Quadratic Equations

As you proceed through your mathematics coursework, from 221 Analytical Geometry - Calculus I, through 222 Calculus II, 223 Calculus III and 335 Introduction to Ordinary Differential Equations, you will be surprised to find out how often we need to solve quadratic equations, of the form

$$
a x^{2}+b x+c=0, a \neq 0 .
$$

To derive the quadratic equation, we complete the square as previously, obtaining

$$
0=a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a},
$$

from which

$$
a\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} .
$$

Taking square roots,

$$
x=-\frac{b}{2 a} \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

## Sinusoidals

Another useful tool is to re-write sums of sines and cosines as single values, as in

$$
a \sin \omega t+b \cos \omega t=A \sin (\omega t+\delta)
$$

(using the identity $\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$ ), where $A=\sqrt{a^{2}+b^{2}}$ and $\cos \delta=\frac{a}{A}$, $\sin \delta=\frac{b}{A}$.

