(1) (6 points each) Compute the following integrals
(a) $\int \frac{d x}{\left(9+x^{2}\right)^{3 / 2}}$. This is a trig substitution problem: let $x=3 \tan \theta$. Then $d x=$ $3 \sec ^{2} \theta d \theta$ and so the integral equals

$$
\int \frac{3 \sec ^{2} \theta d \theta}{\left(9 \sec ^{2} \theta\right)^{3 / 2}}=\frac{3}{27} \int \frac{d \theta}{\sec \theta}=\frac{1}{9} \int \cos \theta d \theta=\frac{1}{9} \sin \theta+C .
$$

Thus, the original integral is $\frac{1}{9} \sin \left(\arctan \left(\frac{x}{9}\right)\right)+C$. Since $\tan \left(\arctan \frac{x}{3}\right)=\frac{x}{3}$, we conclude that $\sin \left(\arctan \left(\frac{x}{9}\right)\right)=\frac{x}{\sqrt{9+x^{2}}}$. We conclude that the final answer is $\frac{1}{9} \frac{x}{\sqrt{9+x^{2}}}+C$.
(b) $\int \frac{3 x}{\left(x^{2}-9\right)^{3 / 2}} d x$. The easiest way to do this integral is by substitution: $u=x^{2}-9$ so that $d u=2 x d x$. Then the integral is $\frac{3}{2} \int \frac{d u}{u^{3 / 2}}=-3 u^{-1 / 2}+C$. Putting $x$ back in, we find the final answer to be $\frac{-3}{\sqrt{x^{2}-9}}+C$.
(c) $\int \frac{3 x+2}{(x+4)(x+2)} d x$. This is solved using partial fraction decomposition. One must solve for $A$ and $B$ in the equation:

$$
\frac{3 x+2}{(x+4)(x+2)}=\frac{A}{x+4}+\frac{B}{x+2}
$$

which implies that $3 x+2=A(x+2)+B(x+4)$. Therefore, $3=A+B$ and $2=2 A+4 B$. It follows that $A=5$ and $B=-2$ so that the original integral is $5 \ln |x+4|-2 \ln |x+2|+C$.
(d) $\int x \sin (2 x) d x$. To solve this, use integration by parts with $u=x$ and $d v=$ $\sin (2 x) d x$. Then $d u=d x$ and $v=\frac{-1}{2} \cos (2 x)$. The answer is $\frac{-x}{2} \cos (2 x)+$ $\frac{1}{4} \sin (2 x)+C$.
(2) The integral $\int_{2}^{3} \frac{d x}{(x-2)^{3 / 2}}$ is improper since the integrand has an infinite discontinuity at $x=2$. Therefore, it equals

$$
\lim _{k \rightarrow 2^{+}} \int_{k}^{3} \frac{d x}{(x-2)^{3 / 2}}
$$

Letting $u=x-2$ we get that the integral $\int \frac{d x}{(x-2)^{3 / 2}}$ equals $\int \frac{d u}{u^{3 / 2}}=-2 \frac{1}{\sqrt{u}}+C$. Therefore, the original integral equals

$$
\lim _{k \rightarrow 2^{+}}\left(-2-\left(-\frac{2}{\sqrt{k-2}}\right)\right)
$$

Since the denominator of the second term goes to 0 , the second term goes to $\infty$ so that the original integral diverges.
(3) The integral $\int \frac{d x}{\left(4-9 x^{2}\right)^{3 / 2}}$ is almost a trig substitution integral, except there is a $9 x^{2}$ instead of just an $x^{2}$. To put it in the correct form substitute $u=3 x$ so that $d u=3 d x$. The integral becomes $\frac{1}{3} \int \frac{d u}{\left(4-u^{2}\right)^{3 / 2}}$. Now we can use $u=2 \sin \theta$ and our $u$-integral becomes

$$
\frac{1}{3} \int \frac{2 \cos \theta}{8 \cos ^{3} \theta} d \theta=\frac{1}{12} \int \sec ^{2} \theta d \theta=\frac{1}{12} \tan \theta+C=\frac{1}{12} \tan \left(\arcsin \frac{u}{2}\right)+C
$$

This last expression is $\frac{1}{12} \frac{u}{\sqrt{4-u^{2}}}+C$. Putting $x$ back in we get

$$
\frac{1}{12} \frac{3 x}{\sqrt{4-9 x^{2}}}+C
$$

(4) (8 points) Consider the region bounded by the curves $y=x+1 / x^{2}$ and $y=x-1 / x^{2}$ for $x \geq 1$.

The area equals

$$
\left.\int_{1}^{\infty}\left(x+\frac{1}{x^{2}}\right)-\left(x-\frac{1}{x^{2}}\right)\right) d x=\int_{1}^{\infty} \frac{2}{x^{2}} d x .
$$

This integral equals

$$
\lim _{l \rightarrow \infty} \int_{1}^{l} \frac{2}{x^{2}} d x=2 \lim _{l \rightarrow \infty}\left(\left.\frac{-1}{x}\right|_{1} ^{l}\right)=2 \lim _{l \rightarrow \infty}\left(\frac{-1}{l}+1\right)=2 .
$$

We conclude that the area is finite and equal to 2 .

