(1) (5 points each) Compute the following:
(a)
(b) $\int_{0}^{2}\left(x^{3}-2 x^{2}+1\right) d x$.

This equals $\int_{0}^{2} x^{3} d x-2 \int_{0}^{2} x^{2}+\int_{0}^{2} d x=\left.\frac{x^{4}}{4}\right|_{0} ^{2}-\left.2 \frac{x^{3}}{3}\right|_{0} ^{2}+\left.x\right|_{0} ^{2}=4-\frac{16}{3}+2$.
(c) $\int_{1}^{2} \frac{1+y^{2}}{y} d y$.

No u-substitution is required. We just simplify the integrand:
$\int_{1}^{2} \frac{1+y^{2}}{y} d y=\int_{1}^{2}\left(y^{-1}+y\right) d y=\left.\left(\ln |y|+y^{2} / 2\right)\right|_{1} ^{2}=\ln 2+2-(\ln 1+1 / 2)=\ln 2+3 / 2$.
(d) $\frac{d}{d t} \int_{t}^{t^{2}} \sin \left(x^{2}\right) d x$.

Using properties of integrals, we know this can be broken up into the sum

$$
\frac{d}{d t} \int_{t}^{0} \sin \left(x^{2}\right) d x+\frac{d}{d t} \int_{0}^{t^{2}} \sin \left(x^{2}\right) d x
$$

By the second FTC, this equals $-\sin \left(t^{2}\right)+\sin \left(\left(t^{2}\right)^{2}\right) \cdot 2 t$.
(2) (5 points each) The following questions concern the area under the curve $f(x)=1+x^{2}$ and above the x-axis between $x=-1$ and $x=2$.
(a) Use a left-handed sum with 3 rectangles to estimate the area. Draw a picture that illustrates this estimate.
There are three rectangles, each of length $(b-a / 3)=2-(-1) / 3=1$. The area of the rectangles is
$1 \cdot f(-1)+1 \cdot f(0)+1 \cdot f(1)=5$.
(b) Use a right-handed sum with 3 rectangles to estimate the area. Draw a picture that illustrates this estimate.
As above, the area is
$1 \cdot f(0)+1 \cdot f(1)+1 \cdot f(2)=8$.
(c) Calculate the exact area.
$\int_{-1}^{2}\left(1+x^{2}\right) d x=\left.\left(x+x^{3} / 3\right)\right|_{-1} ^{2}=2+8 / 3-(-1-1 / 3)=6$.
(3) (a) Compute the area enclosed above by $y=4$ and below by $y=x^{2}$.

The curves intersect at x-values in which $4=x^{2}$, i.e. at $x=2,-2$. Therefore the area is given by $\int_{-2}^{2} 4-x^{2} d x=\left.\left(4 x-x^{3} / 3\right)\right|_{-2} ^{2}=32 / 3$.
(b) Find the horizontal line $y=k$ that divides the area between $y=4$ and $y=x^{2}$ found in part (a) into two equal parts.
One half the area above is $16 / 3$, and the area between the line $y=k$ and the parabola $y=x^{2}$ is given by the definite integral $\int_{?}^{?} k-x^{2} d x$. How do we find the limits of integration? As above, the limits correspond to the x-values of the

intersection points of the two curves $y=k$ and $y=x^{2}$. These curves intersect where $k=x^{2}$, i.e. when $x=\sqrt{k},-\sqrt{k}$. Thus, we must solve for k in the integral

$$
16 / 3=\int_{-\sqrt{k}}^{\sqrt{k}} k-x^{2} d x
$$

The integral equals $\left.\left(k x-x^{3} / 3\right)\right|_{-\sqrt{k}} ^{\sqrt{k}}=4 / 3 k^{3 / 2}$. On the other hand, this must equal $16 / 3$ so we have the equation

$$
16 / 3=4 / 3 k^{3 / 2}
$$

which implies that $k=2^{3} \sqrt{2}$.
(4) (5 points each) Let $g(x)=\int_{0}^{x} f(t) d t$, where $f(t)$ is the function whose graph is shown above.
(a) Evaluate $g(0), g(3)$, and $g^{\prime}(3)$.
$g(0)=\int_{0}^{0} f(t) d t=0, g(3)=\int_{0}^{3} f(t) d t$. To get this integral, do not use the fundamental theorem of calculus, use the fact that the definite integral gives the signed area corresponding to the graph. Hence, $g(3)=7$ (the area above the x-axis to the left of $x=3$.
Finally, $g^{\prime}(x)=d / d t \int_{0}^{x} f(t) d t=f(x)$ so $g^{\prime}(3)=f(3)=0$.
(b) On what interval is g increasing? Why? g is increasing when $g^{\prime}(x)=f(x)>0$. Looking at the graph, this occurs in the interval $(0,3)$.
(c) Where does g have its maximum value in the interval $0 \leq t \leq 7$? Why?

This occurs at $x=3$, since $g(3)$ is the area to the left of $x=3$ and after this point, one must subtract areas.

