Solutions to MA242 Quiz 9, 11/14/06

1. Let the subspace H of \mathbb{R}^{4} be defined by

$$
H:=\left\{\left(\begin{array}{c}
a+b \\
2 a \\
3 a-b \\
-b
\end{array}\right): a, b \text { in } \mathbb{R}\right\}
$$

(a) Find a basis for H.
(b) State the dimension of H. (Justify your answer!)

Solution: (a) Since for \mathbf{x} in H,

$$
\mathbf{x}=a\left(\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right)+b\left(\begin{array}{r}
1 \\
0 \\
-1 \\
-1
\end{array}\right)=a \mathbf{v}_{1}+b \mathbf{v}_{2}
$$

H is the span of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Since neither \mathbf{v}_{1} nor \mathbf{v}_{2} are zero and since they are not multiples of each other, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent, and is therefore a basis for H.
(b) Since the basis for H found in (a) consists of two vectors, the dimension of H is 2 .
2. Assume that the matrix A is row equivalent to B, where

$$
A=\left[\begin{array}{rrrrr}
1 & -3 & 4 & -1 & 9 \\
-2 & 6 & -6 & -1 & -10 \\
-3 & 9 & -6 & -6 & -3 \\
3 & -9 & 4 & 9 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrrrr}
1 & -3 & 0 & 5 & -7 \\
0 & 0 & 2 & -3 & 8 \\
0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Determine Rank A and $\operatorname{dim} \operatorname{Nul} A$. (Justify your answer!)
(b) Find bases for $\operatorname{Row} A$ and $\operatorname{Nul} A$.

Solution: (a) Since the matrix B is in echelon form, we see that there are 3 pivot columns: 1,3 , and 5 ; hence, the dimension of $\operatorname{Col} A$ (the rank) is 3 . Since there are two columns without pivots, the system $A \mathbf{x}=\mathbf{0}$ has two free variables; hence, the dimension of Nul A is 2 .
(b) A basis for Row A is obtained from the pivot rows of $B,(1,-3,0,5,-7),(0,0,2,-3,8)$, and $(0,0,0,0,5)$. To find a basis for $\operatorname{Nul} A$, reduce B to reduced echelon form:

$$
B \sim\left[\begin{array}{rrrrr}
1 & -3 & 0 & 5 & 0 \\
0 & 0 & 1 & -\frac{3}{2} & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, the general solution of $A \mathbf{x}=\mathbf{0}$ is $x_{1}=3 x_{2}-5 x_{4}, x_{3}=\frac{3}{2} x_{4}$, and $x_{5}=0$, with x_{2} and x_{4} free. A basis for $\operatorname{Nul} A$ is given by $(3,1,0,0,0)$ and $\left(-5,0, \frac{3}{2}, 1,0\right)$.

