Solutions to MA242 Quiz 8, 11/07/06

1. Let $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$, where

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}, \quad \text{and} \quad \mathbf{v}_4 = \begin{pmatrix} -4 \\ -8 \\ 9 \end{pmatrix}.$$

- (a) Explain why H is a subspace of \mathbb{R}^3 . (Justify your answer!)
- (b) Find a basis for H.
- (c) Using your answer in (b), explain why H is isomorphic to \mathbb{R}^2 . (Justify your answer!)

Solution: (a) Since the span of a set of vectors in a vector space V always is a subspace of V (Theorem 1, Section 4.1) and since H is defined as $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}, H$ is a subspace of \mathbb{R}^3 .

(b) Write the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_4$ into a matrix A and then row reduce A to find its pivot columns:

$$A = [\mathbf{v}_1 \dots \mathbf{v}_4] = \begin{bmatrix} 1 & 6 & 2 & -4 \\ -3 & 2 & -2 & -8 \\ 4 & -1 & 3 & 9 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 6 & 2 & -4 \\ 0 & 5 & 1 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The first two columns of A are the pivot columns and hence form a basis of ColA = H; in other words, $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for H.

(c) Since any vector \mathbf{x} in H can be written as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 , that is, since

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$$

for some scalars c_1 , c_2 , it follows that the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = (c_1, c_2)$ of \mathbf{x} is in \mathbb{R}^2 . Hence, H is isomorphic to \mathbb{R}^2 under the coordinate mapping, see Theorem 8 in Section 4.4.

2. Let

$$\mathbf{b}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad \mathbf{b}_2 = \begin{pmatrix} -3\\4\\0 \end{pmatrix}, \quad \text{and} \quad \mathbf{b}_3 = \begin{pmatrix} 3\\-6\\3 \end{pmatrix}.$$

- (a) Show that the set $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is a basis for \mathbb{R}^3 .
- (b) Find the change-of-coordinate matrix $P_{\mathcal{B}}$ from \mathcal{B} to the standard basis \mathcal{E} .
- (c) Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of $\mathbf{x} = (-8, 2, 3)$ relative to \mathcal{B} .

Solution: (a) The change-of-coordinates matrix $P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3]$ is row-equivalent to the identity matrix I_3 . Hence, by the Invertible Matrix Theorem, $P_{\mathcal{B}}$ is invertible, and its

columns form a basis for \mathbb{R}^3 .

(b) By (a), it follows that

$$P_{\mathcal{B}} = \left[\begin{array}{rrrr} 1 & -3 & 3 \\ 0 & 4 & -6 \\ 0 & 0 & 3 \end{array} \right]$$

for the change-of-coordinates matrix $P_{\mathcal{B}}$, with $[\mathbf{x}]_{\mathcal{E}} = \mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$.

(c) To solve the equation $[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\mathbf{x}$ for $[\mathbf{x}]_{\mathcal{B}}$, row reduce the augmented matrix $[P_{\mathcal{B}} \mathbf{x}]$:

$$\begin{bmatrix} 1 & -3 & 3 & -8 \\ 0 & 4 & -6 & 2 \\ 0 & 0 & 3 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Hence, $[\mathbf{x}]_{\mathcal{B}} = (-5, 2, 1).$