Solutions to MA242 Quiz 8, 11/07/06

1. Let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$, where

$$
\mathbf{v}_{1}=\left(\begin{array}{r}
1 \\
-3 \\
4
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{r}
6 \\
2 \\
-1
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{r}
2 \\
-2 \\
3
\end{array}\right), \quad \text { and } \quad \mathbf{v}_{4}=\left(\begin{array}{r}
-4 \\
-8 \\
9
\end{array}\right)
$$

(a) Explain why H is a subspace of \mathbb{R}^{3}. (Justify your answer!)
(b) Find a basis for H.
(c) Using your answer in (b), explain why H is isomorphic to \mathbb{R}^{2}. (Justify your answer!)

Solution: (a) Since the span of a set of vectors in a vector space V always is a subspace of V (Theorem 1, Section 4.1) and since H is defined as $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}, H$ is a subspace of \mathbb{R}^{3}.
(b) Write the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ into a matrix A and then row reduce A to find its pivot columns:

$$
A=\left[\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{4}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 6 & 2 & -4 \\
-3 & 2 & -2 & -8 \\
4 & -1 & 3 & 9
\end{array}\right] \sim \cdots \sim\left[\begin{array}{rrrr}
1 & 6 & 2 & -4 \\
0 & 5 & 1 & -5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The first two columns of A are the pivot columns and hence form a basis of $\operatorname{Col} A=H$; in other words, $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for H.
(c) Since any vector \mathbf{x} in H can be written as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}, that is, since

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

for some scalars c_{1}, c_{2}, it follows that the coordinate vector $[\mathbf{x}]_{\mathcal{B}}=\left(c_{1}, c_{2}\right)$ of \mathbf{x} is in \mathbb{R}^{2}. Hence, H is isomorphic to \mathbb{R}^{2} under the coordinate mapping, see Theorem 8 in Section 4.4.
2. Let

$$
\mathbf{b}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{b}_{2}=\left(\begin{array}{r}
-3 \\
4 \\
0
\end{array}\right), \quad \text { and } \quad \mathbf{b}_{3}=\left(\begin{array}{r}
3 \\
-6 \\
3
\end{array}\right)
$$

(a) Show that the set $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is a basis for \mathbb{R}^{3}.
(b) Find the change-of-coordinate matrix $P_{\mathcal{B}}$ from \mathcal{B} to the standard basis \mathcal{E}.
(c) Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of $\mathbf{x}=(-8,2,3)$ relative to \mathcal{B}.

Solution: (a) The change-of-coordinates matrix $P_{\mathcal{B}}=\left[\mathbf{b}_{1} \mathbf{b}_{2} \mathbf{b}_{3}\right]$ is row-equivalent to the identity matrix I_{3}. Hence, by the Invertible Matrix Theorem, $P_{\mathcal{B}}$ is invertible, and its
columns form a basis for \mathbb{R}^{3}.
(b) By (a), it follows that

$$
P_{\mathcal{B}}=\left[\begin{array}{rrr}
1 & -3 & 3 \\
0 & 4 & -6 \\
0 & 0 & 3
\end{array}\right]
$$

for the change-of-coordinates matrix $P_{\mathcal{B}}$, with $[\mathbf{x}]_{\mathcal{E}}=\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$.
(c) To solve the equation $[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}$ for $[\mathbf{x}]_{\mathcal{B}}$, row reduce the augmented matrix $\left[P_{\mathcal{B}} \mathbf{x}\right]$:

$$
\left[\begin{array}{rrrr}
1 & -3 & 3 & -8 \\
0 & 4 & -6 & 2 \\
0 & 0 & 3 & 3
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & -5 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Hence, $[\mathbf{x}]_{\mathcal{B}}=(-5,2,1)$.

