Solutions to MA242 Quiz 7, 10/31/06

1. Let S be the parallelogram determined by $\mathbf{b}_{1}=(4,-7)$ and $\mathbf{b}_{2}=(0,1)$, and let

$$
A=\left[\begin{array}{ll}
7 & 2 \\
1 & 1
\end{array}\right]
$$

Compute the area of the image of S under the mapping $\mathbf{x} \mapsto A \mathbf{x}$.

Solution: Since the area of S is given by $|\operatorname{det} B|=\left|\operatorname{det}\left[\mathbf{b}_{1}, \mathbf{b}_{2}\right]\right|$ and since the area of the image of S under $\mathbf{x} \mapsto A \mathbf{x}$ is given by

$$
\text { (area of image of } S \text { under } \mathbf{x} \mapsto A \mathbf{x})=|\operatorname{det} A| \cdot(\text { area of } S)
$$

it follows that

$$
\text { (area of image of } S \text { under } \mathbf{x} \mapsto A \mathbf{x})=|7(1)-1(2)| \cdot|4(1)-(-7) 0|=5(4)=20
$$

Note: Another possibility to compute that area is to first find the image of S under $\mathbf{x} \mapsto A \mathbf{x}$ by computing $A B$, and then to find $|\operatorname{det}(A B)|=20$.
2. Let

$$
A=\left[\begin{array}{rrr}
-8 & -2 & -9 \\
6 & 4 & 8 \\
4 & 0 & 4
\end{array}\right] \quad \text { and } \quad \mathbf{w}=\left(\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right)
$$

(a) Determine if \mathbf{w} is in $\operatorname{Col} A$.
(b) Is \mathbf{w} in $\operatorname{Nul} A$?

Solution: (a) To find out whether \mathbf{w} is $\operatorname{in} \operatorname{Col} A$, we have to check whether \mathbf{w} can be written as a linear combination of the columns of A. In other words, we have to determine whether $[A \mathbf{w}]$ is consistent:

$$
[A \mathbf{w}] \sim\left[\begin{array}{rrrr}
-8 & -2 & -9 & 2 \\
6 & 4 & 8 & 1 \\
4 & 0 & 4 & -2
\end{array}\right] \sim \cdots \sim\left[\begin{array}{rrrr}
1 & 0 & 1 & -\frac{1}{2} \\
0 & -2 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence, the linear system is consistent, which means that \mathbf{w} is in $\operatorname{Col} A$.

Note: It is not correct to claim that \mathbf{w} is not in $\operatorname{Col} A$ because it is not a column of A (or a multiple of a column of $A) ; \operatorname{Col} A$ is the space spanned by the columns of A.
(b) To determine whether \mathbf{w} is in $\operatorname{Nul} A$, we only have to check whether it is a solution of $A \mathbf{x}=\mathbf{0}$:

$$
A \mathbf{w}=\left(\begin{array}{c}
-8(2)-2(1)-9(-2) \\
6(2)+4(1)+8(-2) \\
4(2)+0(1)+4(-2)
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Hence, w also is in Nul A.

Note: It is not necessary to solve the linear system $A \mathbf{x}=\mathbf{0}$, since the question was not to find a spanning set for $\operatorname{Nul} A$, but only to check whether one specific vector is in that space.
3. Is the set of all polynomials of the form $\mathbf{p}(t)=a+t^{2}$ (with a in \mathbb{R}) a subspace of \mathbb{P}_{2} ? (Justify your answer!)

Solution: The answer is no; the simplest justification is because the zero vector is not contained in the set: $a+t^{2}$ is not the zero polynomial for any choice of a. (Alternatively, one can argue that the set is not closed under vector addition and scalar multiplication.)

