Solutions to MA242 Quiz 6, 10/24/06

1. (a) Compute the determinant $\operatorname{det} A$ of the matrix

$$
A=\left[\begin{array}{rrrr}
1 & -2 & 5 & 2 \\
0 & 0 & 3 & 0 \\
2 & -6 & -7 & 5 \\
5 & 0 & 4 & 4
\end{array}\right]
$$

(Show all work!)
(b) Using the result of (a), determine whether the columns of A are linearly independent. (Justify your answer!)

Solution: (a) Doing a cofactor expansion along the second row, we find

$$
\operatorname{det} A=(-1)^{2+3} 3\left|\begin{array}{rrr}
1 & -2 & 2 \\
2 & -6 & 5 \\
5 & 0 & 4
\end{array}\right|
$$

now, one possibility is to compute the 3×3-determinant a cofactor expansion across the third row, say,

$$
\operatorname{det} A=-3\left((-1)^{3+1} 5\left|\begin{array}{ll}
-2 & 2 \\
-6 & 5
\end{array}\right|+(-1)^{3+3} 4\left|\begin{array}{ll}
1 & -2 \\
2 & -6
\end{array}\right|\right)=-3(5(2)+4(-2))=-6 .
$$

(Other possibilities are to expand down the second column or use the formula for 3×3 matrices from the Problem Section in 3.1.)
(b) Since $\operatorname{det} A \neq 0$, the matrix A is invertible. Hence, by the Invertible Matrix Theorem, the columns of (a) are linearly independent.
2. (a) Find the general solution of $A \mathbf{x}=\mathbf{b}$ for $\mathbf{b}=(-2,3)$ by using the given $L U$ factorization for A,

$$
A=\left[\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 & 3 & -5 \\
0 & -1 & 2
\end{array}\right] .
$$

(b) Write the solution vector \mathbf{x} from (a) in parametric vector form, and interpret it geometrically.

Solution: (a) Since $A \mathbf{x}=(L U) \mathbf{x}=L(U \mathbf{x})=\mathbf{b}$, we first write $\mathbf{y}=U \mathbf{x}$ and solve $L \mathbf{y}=\mathbf{b}$:

$$
[L \quad \mathbf{b}]=\left[\begin{array}{rrr}
1 & 0 & -2 \\
-2 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & -2 \\
0 & 1 & -1
\end{array}\right]
$$

Hence, $\mathbf{y}=(-2,-1)$. In the second step, we solve $U \mathbf{x}=\mathbf{y}$:

$$
[U \quad \mathbf{y}]=\left[\begin{array}{rrrr}
1 & 3 & -5 & -2 \\
0 & -1 & 2 & -1
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 1 & -5 \\
0 & 1 & -2 & 1
\end{array}\right] .
$$

Hence, $x_{1}=-5-x_{3}$ and $x_{2}=1+2 x_{3}$ are basic variables, and x_{3} is free.
(b) In parametric vector form, \mathbf{x} is given by

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-5-x_{3} \\
1+2 x_{3} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
-5 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right),
$$

which defines a line in \mathbb{R}^{3} which passes through the point $(-5,1,0)$.

