Solutions to MA242 Quiz 5, 10/17/06

1. (a) Find the inverse A^{-1} of the matrix

$$
A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

(b) Use the inverse found in (a) to solve the linear system

$$
\begin{aligned}
x_{1}-2 x_{3} & =-1 \\
-3 x_{1}+x_{2}+4 x_{3} & =2 \\
2 x_{1}-3 x_{2}+4 x_{3} & =1 .
\end{aligned}
$$

(c) Is the solution found in (b) unique? (Justify your answer!)

Solution: (a) To find the inverse, we apply the algorithm from Section 2.2:

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & I_{3}
\end{array}\right] } & \sim\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 1 & 0 & 0 \\
-3 & 1 & 4 & 0 & 1 & 0 \\
2 & -3 & 4 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & 1 & 0 \\
0 & -3 & 8 & -2 & 0 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & 1 & 0 \\
0 & 0 & 2 & 7 & 3 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 8 & 3 & 1 \\
0 & 1 & 0 & 10 & 4 & 1 \\
0 & 0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2}
\end{array}\right] .
\end{aligned}
$$

Therefore,

$$
A^{-1}=\left[\begin{array}{rrr}
8 & 3 & 1 \\
10 & 4 & 1 \\
\frac{7}{2} & \frac{3}{2} & \frac{1}{2}
\end{array}\right]
$$

(b) To find \mathbf{x} in $A \mathbf{x}=\mathbf{b}$, note that

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{rrr}
8 & 3 & 1 \\
10 & 4 & 1 \\
\frac{7}{2} & \frac{3}{2} & \frac{1}{2}
\end{array}\right]\left(\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{r}
-1 \\
-1 \\
0
\end{array}\right) .
$$

(c) Yes, $\mathbf{x}=(-1,-1,0)$ is the unique solution of $A \mathbf{x}=\mathbf{b}$. To justify this, cite either Theorem 5 from Section 2.2, or use the fact that by (a), A has a pivot in every column and that therefore $A \mathbf{x}=\mathbf{b}$ has no free variables, or apply the Invertible Matrix Theorem to argue that the linear transformation corresponding to $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one and onto.
2. If the equation $A \mathbf{x}=\mathbf{b}$ has more than one solution for some \mathbf{b} in \mathbb{R}^{n}, can the columns of A span \mathbb{R}^{n} ? (Justify your answer!)

Solution: If $A \mathbf{x}=\mathbf{b}$ has more than one solution, the matrix A cannot be invertible by Theorem 5 in Section 2.2. So, by the Invertible Matrix Theorem, the columns of A cannot $\operatorname{span} \mathbb{R}^{n}$.

