Solutions to MA242 Quiz 4, 10/03/06

1. How many rows and columns must a matrix A have in order to define a mapping from \mathbb{R}^{3} into \mathbb{R}^{4} by the rule $T(\mathbf{x})=A \mathbf{x}$? (Justify your answer!)

Solution: A must have 4 rows and 3 columns. For the domain of T to be \mathbb{R}^{3}, A must have 3 columns so that the matrix-vector product $A \mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^{3}. For the codomain of T to be \mathbb{R}^{4}, the columns of A must have 4 entries (that is, A must have 4 rows), since $A \mathrm{x}$ is a linear combination of the columns of A.
2. Let the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by

$$
T(\mathbf{x})=T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-5 x_{2}+4 x_{3}, x_{2}-6 x_{3}\right)
$$

(a) Show that T is a linear transformation by finding its standard matrix.
(b) Determine if T is one-to-one and onto. (Justify your answers!)

Solution: (a) Since $T(\mathbf{x})$ has two entries, the standard matrix A has 2 rows; since \mathbf{x} has 3 entries, A has 3 columns. To find A, write

$$
\begin{aligned}
T(\mathbf{x}) & =\binom{x_{1}-5 x_{2}+4 x_{3}}{x_{2}-6 x_{3}}=x_{1}\binom{1}{0}+x_{2}\binom{-5}{1}+x_{3}\binom{4}{-6} \\
& =\left[\begin{array}{rrr}
1 & -5 & 4 \\
0 & 1 & -6
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{aligned}
$$

Since every matrix transformation is linear and since we have just shown that $T(\mathbf{x})=A \mathbf{x}$, T is linear.
(b) The columns of A are linearly dependent, since A has more columns than rows. So, T is not one-to-one, see Theorem 12. Moreover, since A has a pivot in each row, the rows of A span \mathbb{R}^{2}. Hence, again by Theorem $12, T$ maps \mathbb{R}^{3} onto \mathbb{R}^{2}, that is, it is onto.

