Solutions to MA242 Quiz 3, 09/26/06

1. Describe the solution sets of $x_1 - 3x_2 + 5x_3 = 0$ and of $x_1 - 3x_2 + 5x_3 = 4$ in parametric vector form. Then, interpret and compare them geometrically.

Solution: Solve the nonhomogeneous equation $x_1 - 3x_2 + 5x_3 = 4$ for the basic variable x_1 , so that $x_1 = 4 + 3x_2 - 5x_3$, with x_2 and x_3 free. Writing this solution in vector form, we get

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 + 3x_2 - 5x_3 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 3x_2 \\ x_2 \\ 0 \end{pmatrix} + \begin{pmatrix} -5x_3 \\ 0 \\ x_3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix}$$

Similarly, the solution of the homogeneous equation $x_1 - 3x_2 + 5x_3 = 0$ is

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix} := x_2 \mathbf{u} + x_3 \mathbf{v}.$$

Since the vectors \mathbf{u} and \mathbf{v} are not multiples of each other, the solution set of the homogeneous equation is the *plane* through the origin in \mathbb{R}^3 spanned by \mathbf{u} and \mathbf{v} . The solution set of the nonhomogeneous equation is also a plane which is parallel to the first one and which passes through the point $\mathbf{p} = (4, 0, 0)$.

2. Let

$$\mathbf{v}_1 = \begin{pmatrix} 1\\ -5\\ -3 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} -2\\ 10\\ 6 \end{pmatrix}, \ \text{and} \ \mathbf{v}_3 = \begin{pmatrix} 2\\ -9\\ h \end{pmatrix}.$$

- (a) For what values of h is \mathbf{v}_3 in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$?
- (b) For what values of h is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linearly *independent*?

Solution: (a) The vector \mathbf{v}_3 is in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ if and only if the equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \mathbf{v}_3$ has a solution. Hence, row reduce $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$, considered as an augmented matrix, to find

$$\begin{bmatrix} 1 & -2 & 2 \\ -5 & 10 & -9 \\ -3 & 6 & h \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & h+6 \end{bmatrix}.$$

The equation 0 = 1 shows that the original vector equation has no solution. Therefore, \mathbf{v}_3 is in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ for *no* value of *h*.

(b) For $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ to be linearly independent, the equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$ must have only the trivial solution. Row reducing the corresponding augmented matrix, one finds

1	-2	2	0		1	-2	2	0]
-5	10	-9	0	$\sim \cdots \sim$	0	0	1	0	.
-3	6	h	0		0	0	0	0	

Hence, x_2 is a free variable for *any* value of h, and the homogeneous system has nontrivial solutions. Thus, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly dependent set for all h.

Note: An alternative way to approach this problem is to realize that \mathbf{v}_1 and \mathbf{v}_2 are multiples of each other: $\mathbf{v}_2 = -2\mathbf{v}_1$. Since \mathbf{v}_3 cannot be a multiple of either \mathbf{v}_1 or \mathbf{v}_2 , regardless of h, it is not in the span of the two. For part (b), this implies that one can find the linear dependence relation $2\mathbf{v}_1 + 1\mathbf{v}_2 + 0\mathbf{v}_3 = \mathbf{0}$, i.e., a nontrivial linear combination of the zero vector, without row reduction.