Solutions to MA242 Quiz 2, 09/19/06

1. Determine if the vector \mathbf{b} is a linear combination of the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.

$$
\mathbf{a}_{1}=\left(\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right), \mathbf{a}_{2}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), \mathbf{a}_{3}=\left(\begin{array}{r}
5 \\
-6 \\
8
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{r}
2 \\
-1 \\
6
\end{array}\right) .
$$

Solution: The question is equivalent to the question if the vector equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+$ $x_{3} \mathbf{a}_{3}=\mathbf{b}$ has a solution. Now, this equation has the same solution set as the linear system with augmented matrix

$$
\left[\begin{array}{rrrr}
1 & 0 & 5 & 2 \\
-2 & 1 & -6 & -1 \\
0 & 2 & 8 & 6
\end{array}\right]
$$

Row reducing this matrix, one finds

$$
\left[\begin{array}{llll}
1 & 0 & 5 & 2 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

therefore, the linear system corresponding to the augmented matrix $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} \\ \mathbf{b}\end{array}\right]$ is consistent, which implies that the above vector equation also has a solution. Hence, b is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.
Note: Since x_{3} is a free variable, the solution \mathbf{x} is not unique; however, uniqueness is not what was asked, just existence!
2. Let

$$
A=\left[\begin{array}{rrr}
1 & -3 & -4 \\
-3 & 2 & 6 \\
5 & -1 & -8
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Show that the system $A \mathbf{x}=\mathbf{b}$ is not consistent for all possible \mathbf{b}, and describe the set of all \mathbf{b} for which the system does have a solution.

Solution: Row reducing the augmented matrix $[A \mathbf{b}]$, one finds

$$
\left[\begin{array}{rrrr}
1 & -3 & -4 & b_{1} \\
-3 & 2 & 6 & b_{2} \\
5 & -1 & -8 & b_{3}
\end{array}\right] \sim \cdots \sim\left[\begin{array}{rrrr}
1 & -3 & -4 & b_{1} \\
0 & -7 & -6 & b_{2}+3 b_{1} \\
0 & 0 & 0 & b_{1}+2 b_{2}+b_{3}
\end{array}\right]
$$

Therefore, the equation $A \mathbf{x}=\mathbf{b}$ is consistent if and only if $b_{1}+2 b_{2}+b_{3}=0$, i.e, if the rightmost column is not a pivot column. Hence, the system is not consistent for every possible choice of \mathbf{b}; it is inconsistent if $b_{1}+2 b_{2}+b_{3} \neq 0$.
Note: The condition that $b_{1}+2 b_{2}+b_{3}=0$ defines a plane through the origin in \mathbb{R}^{3}.

