1. Let

$$
\mathbf{u}_{1}=\left(\begin{array}{l}
3 \\
4 \\
0
\end{array}\right), \quad \mathbf{u}_{1}=\left(\begin{array}{r}
-4 \\
3 \\
0
\end{array}\right), \quad \text { and } \mathbf{y}=\left(\begin{array}{r}
6 \\
3 \\
-2
\end{array}\right)
$$

(a) Verify that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal set.
(b) Find the orthogonal decomposition of $\mathbf{y}, \mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$, with $\hat{\mathbf{y}} \in W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $\mathbf{z} \in W^{\perp}$.
(c) Compute the distance from \mathbf{y} to W.

Solution: (a) Since $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=-12+12=0,\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal set.
(b) $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto W, with

$$
\begin{aligned}
\hat{\mathbf{y}} & =\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{30}{25} \mathbf{u}_{1}-\frac{15}{25} \mathbf{u}_{2} \\
& =\frac{6}{5}\left(\begin{array}{l}
3 \\
4 \\
0
\end{array}\right)-\frac{3}{5}\left(\begin{array}{r}
-4 \\
3 \\
0
\end{array}\right)=\left(\begin{array}{l}
6 \\
3 \\
0
\end{array}\right) .
\end{aligned}
$$

For $\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}=(0,0,-2), \mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$, and $\hat{\mathbf{y}} \in W, \mathbf{z} \in W^{\perp}$ by construction.
(c) The distance from \mathbf{y} to W is

$$
\operatorname{dist}(\mathbf{y}, W)=\|\mathbf{z}\|=\sqrt{0^{2}+0^{2}+(-2)^{2}}=2
$$

2. Given the data points $\left(x_{1}, y_{1}\right)=(1,0),\left(x_{2}, y_{2}\right)=(2,1),\left(x_{3}, y_{3}\right)=(4,2)$, and $\left(x_{4}, y_{4}\right)=$ $(5,3)$, find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data.

Solution: The design matrix X and observation vector \mathbf{y} are

$$
X=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4 \\
1 & 5
\end{array}\right] \quad \text { and } \quad \mathbf{y}=\left(\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right)
$$

To set up the normal equations, one computes

$$
X^{T} X=\left[\begin{array}{rr}
4 & 12 \\
12 & 46
\end{array}\right] \quad \text { and } \quad X^{T} \mathbf{y}=\binom{6}{25}
$$

Since $X^{T} X$ is invertible (the columns of X are clearly linearly independent), one can compute $\hat{\beta}$ via

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}=\cdots=\binom{-0.6}{0.7}
$$

and the least-squares line is given by $y=-0.6+0.7 x$.

