Solutions to MA242 Quiz 11, 12/05/06

1. Let

$$
A=\left[\begin{array}{rr}
2 & 3 \\
-1 & -2
\end{array}\right]
$$

(a) Solve the initial value problem $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ for $t \geq 0$, with $\mathbf{x}(0)=(1,1)$.
(b) Classify the nature of the origin (attractor, repellor, or saddle point).
(c) Find the directions of greatest attraction, or repulsion, and sketch typical trajectories.

Solution: (a) Since $\operatorname{det}\left(A-\lambda I_{2}\right)=\lambda^{2}-1$, the eigenvalues of A are $\lambda_{1}=-1$ and $\lambda_{2}=1$. Bases for the corresponding two eigenspaces are for instance $\mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(-3,1)$. To find c_{1} and c_{2} such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\mathbf{x}(0)$, row reduce

$$
\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{x}(0)\right]=\left[\begin{array}{rrr}
-1 & -3 & 1 \\
1 & 1 & 1
\end{array}\right] \sim \cdots \sim\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & -1
\end{array}\right] .
$$

Hence, $c_{1}=2$ and $c_{2}=-1$, and the solution of the initial-value problem is given by

$$
\mathbf{x}(t)=2\binom{-1}{1} \mathrm{e}^{-t}+(-1)\binom{-3}{1} \mathrm{e}^{t} .
$$

(b) Since one of the eigenvalues is negative and the other one is positive, the origin is a saddle point of $\mathbf{x}^{\prime}=A \mathbf{x}$.
(c) The direction of greatest attraction is the line through \mathbf{v}_{1} and the origin; the direction of greatest repulsion is the line through \mathbf{v}_{2} and the origin.
2. Let the vectors \mathbf{u} and \mathbf{v} be defined by

$$
\mathbf{u}=\left(\begin{array}{r}
1 \\
-2 \\
3 \\
-7
\end{array}\right) \quad \text { and } \quad \mathbf{v}=\left(\begin{array}{r}
-3 \\
5 \\
4 \\
0
\end{array}\right)
$$

(a) Determine if \mathbf{u} and \mathbf{v} are orthogonal.
(b) Compute the distance $\operatorname{dist}(\mathbf{u}, \mathbf{v})$ between \mathbf{u} and \mathbf{v}.
(c) Find a unit vector in the direction of \mathbf{u}.

Solution: (a) Since $\mathbf{u} \cdot \mathbf{v}=1(-3)+(-2) 5+3(4)+(-7) 0=-1 \neq 0, \mathbf{u}$ and \mathbf{v} are not orthogonal.
(b) Since $\mathbf{u}-\mathbf{v}=(4,-7,-1,-7)$,

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|=\sqrt{4^{2}+(-7)^{2}+(-1)^{2}+(-7)^{2}}=\sqrt{115} \approx 10.72
$$

(c) Since $\|\mathbf{u}\|=\sqrt{1^{2}+(-2)^{2}+3^{2}+(-7)^{2}}=\sqrt{63}=3 \sqrt{7}$, a unit vector in the direction of \mathbf{u} is given by

$$
\frac{1}{\|\mathbf{u}\|} \mathbf{u}=\frac{1}{3 \sqrt{7}}\left(\begin{array}{r}
1 \\
-2 \\
3 \\
-7
\end{array}\right)
$$

