Solutions to MA242 Quiz 10, 11/28/06

1. Define the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left[\begin{array}{rr}
2 & -6 \\
-1 & 3
\end{array}\right] .
$$

Find a basis \mathcal{B} for \mathbb{R}^{2} with the property that $[T]_{\mathcal{B}}$ is diagonal.

Solution: Diagonalize A by finding the eigenvalues and eigenvectors of A : The characteristic polynomial is $\lambda^{2}-5 \lambda=\lambda(\lambda-5)$, so the eigenvalues of A are 5 and 0 . For $\lambda=5$,

$$
A-5 I_{2}=\left[\begin{array}{ll}
-3 & -6 \\
-1 & -2
\end{array}\right]
$$

and a basis for the eigenspace is thus $\mathbf{v}_{1}=(-2,1)$. Similarly, for $\lambda=0$, a basis is given by a solution to $A \mathbf{x}=\mathbf{0}$; one can take, e.g., $\mathbf{v}_{2}=(3,1)$. From \mathbf{v}_{1} and \mathbf{v}_{2}, we construct

$$
P=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
-2 & 3 \\
1 & 1
\end{array}\right]
$$

By Theorem 8, the basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ has the property that the \mathcal{B}-matrix of $\mathbf{x} \mapsto A \mathbf{x}$ is diagonal.
2. Define the matrix C by

$$
C=\left[\begin{array}{rr}
\sqrt{3} & 3 \\
-3 & \sqrt{3}
\end{array}\right]
$$

(a) Show that the eigenvalues of C are $\sqrt{3} \pm 3 i$, with corresponding eigenvectors $(1, \pm i)$.
(b) The transformation $\mathbf{x} \mapsto C \mathbf{x}$ is the composition of a rotation and a scaling. Give the angle φ of the rotation $(-\pi \leq \varphi \leq \pi)$, and give the scaling factor r.

Solution: (a) Computing

$$
C \mathbf{x}=\left[\begin{array}{rr}
\sqrt{3} & 3 \\
-3 & \sqrt{3}
\end{array}\right]\binom{1}{i}=\binom{\sqrt{3}+3 i}{-3+\sqrt{3} i}=(\sqrt{3}+3 i)\binom{1}{i}
$$

one sees that $(1, i)$ is an eigenvector corresponding to the eigenvalue $\sqrt{3}+3 i$. Therefore, the complex conjugate vector $(1,-i)$ must also be an eigenvector corresponding to $\sqrt{3}-3 i$.
(b) The angle of rotation of the transformation is

$$
\varphi=\arctan \left(\frac{-3}{\sqrt{3}}\right)=-\frac{\pi}{3}
$$

the scaling factor is

$$
r=|\lambda|=\sqrt{(\sqrt{3})^{2}+(-3)^{2}}=2 \sqrt{3}
$$

