MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam

Prof. Nikola Popovic, November 9, 2006, 09:30am-10:50am

Problem 1 (15 points).

Let the matrix A be given by

$$
\left[\begin{array}{rrr}
1 & -2 & -1 \\
-1 & 5 & 6 \\
5 & -4 & 5
\end{array}\right]
$$

(a) Find the inverse A^{-1} of A, if it exists.
(b) Based on your answer in (a), determine whether the columns of A span \mathbb{R}^{3}. (Justify your answer!)

Solution.

(a) To check whether A is invertible, we row reduce the augmented matrix $\left[A I_{3}\right]$:

$$
\left[\begin{array}{rrrrrr}
1 & -2 & -1 & 1 & 0 & 0 \\
-1 & 5 & 6 & 0 & 1 & 0 \\
5 & -4 & 5 & 0 & 0 & 1
\end{array}\right] \sim \ldots \sim\left[\begin{array}{rrrrrr}
1 & -2 & -1 & 1 & 0 & 0 \\
0 & 3 & 5 & 1 & 1 & 0 \\
0 & 0 & 0 & -7 & -2 & 1
\end{array}\right] .
$$

Since the last row in the echelon form of A contains only zeros, A is not row equivalent to I_{3}. Hence, A is not invertible, and A^{-1} does not exist.
(b) Since A is not invertible by (a), the Invertible Matrix Theorem says that the columns of A cannot span \mathbb{R}^{3}.

Problem 2 (15 points).

Let the vectors b_{1}, \ldots, b_{4} be defined by

$$
\mathbf{b}_{1}=\left(\begin{array}{r}
3 \\
5 \\
-2 \\
4
\end{array}\right), \quad \mathbf{b}_{2}=\left(\begin{array}{r}
2 \\
-1 \\
-5 \\
7
\end{array}\right), \quad \mathbf{b}_{3}=\left(\begin{array}{r}
-1 \\
1 \\
3 \\
0
\end{array}\right), \quad \text { and } \quad \mathbf{b}_{4}=\left(\begin{array}{r}
0 \\
0 \\
0 \\
-3
\end{array}\right)
$$

(a) Determine if the set $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right\}$ is linearly independent by computing the determinant of the matrix $B=\left[\mathbf{b}_{1} \mathbf{b}_{2} \mathbf{b}_{3} \mathbf{b}_{4}\right]$.
(b) Using your answer in (a), determine if \mathcal{B} is a basis for \mathbb{R}^{4}. (Justify your answer!)

Solution.

(a) The determinant of B is most easily computed by first going down the fourth column,

$$
\operatorname{det} B=\operatorname{det}\left[\begin{array}{rrrr}
3 & 2 & -1 & 0 \\
5 & -1 & 1 & 0 \\
-2 & -5 & 3 & 0 \\
4 & 7 & 0 & -3
\end{array}\right]=(-1)^{4+4}(-3) \operatorname{det} \underbrace{\left[\begin{array}{rrr}
3 & 2 & -1 \\
5 & -1 & 1 \\
-2 & -5 & 3
\end{array}\right]}_{B_{44}} .
$$

Now, one possibility to compute the determinant of the 3×3-submatrix B_{44} is

$$
\begin{aligned}
\operatorname{det} B_{44} & =(3)(-1)(3)+(2)(1)(-2)+(-1)(5)(-5) \\
& -[(-2)(-1)(-1)+(-5)(1)(3)+(3)(5)(2)]=-1 .
\end{aligned}
$$

Hence, $\operatorname{det} B=(-3)(-1)=3$.
(b) Since $\operatorname{det} B \neq 0$, it follows that the matrix B is invertible. Hence, by the Invertible Matrix Theorem, the columns of B are linearly independent, and the columns of B span \mathbb{R}^{4}. Therefore, the set \mathcal{B} is a basis for \mathbb{R}^{4}.

Problem 3 (15 points).

Let the matrix A be given by

$$
\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

(a) Find a basis for the column space $\operatorname{Col} A$ of A.
(b) Find a basis for the null space $\operatorname{Nul} A$ of A.
(c) What are the dimensions of $\operatorname{Col} A$ and $\operatorname{Nul} A$? (Justify your answers!)

Solution.

(a) To find a basis for $\operatorname{Col} A$, we have to reduce A to echelon form:

$$
\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \sim \ldots \sim\left[\begin{array}{rrrrr}
1 & -2 & 2 & 3 & -1 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The pivot columns in the echelon form are the first and third columns; therefore, a basis for $\operatorname{Col} A$ is given by the first and third columns of $A,(-3,1,2)$ and $(-1,2,5)$.
(b) To obtain a basis for $\operatorname{Nul} A$, we have to find the solution set of $A \mathbf{x}=\mathbf{0}$. Hence, we continue row reducing until the reduced echelon form of A is found:

$$
\left[\begin{array}{rrrrr}
1 & -2 & 2 & 3 & -1 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The basic variables x_{1} and x_{3} can be expressed in terms of the free variables x_{2}, x_{4}, and x_{5}, with $x_{1}=2 x_{2}+x_{4}-3 x_{5}$ and $x_{3}=-2 x_{4}+2 x_{5}$. The general solution in parametric vector form is given by

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=x_{2}\left(\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{r}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{r}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right) .
$$

Hence, a basis for $\operatorname{Nul} A$ is given by the three vectors ($2,1,0,0,0$), $(1,0,-2,1,0)$, and ($-3,0,2,0,1$).
(c) Since the basis for $\operatorname{Col} A$ found in (a) consists of two vectors, the dimension of $\operatorname{Col} A$ is 2 . Since the basis for $\operatorname{Nul} A$ found in (b) consists of three vectors, the dimension of $\operatorname{Nul} A$ is 3 .
(Note: This agrees with the Rank Theorem, since $\operatorname{dim}(\operatorname{Col} A)+\operatorname{dim}(\operatorname{Nul} A)=5$ equals the number of columns of A.)

Problem 4 (15 points).

Let V be a vector space, and let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V. Show that the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is an isomorphism from V onto \mathbb{R}^{n}.

Solution.

To show that the coordinate mapping is an isomorphism, we have to show that it is linear, one-toone, and onto. For vectors \mathbf{x} and \mathbf{y} in V, let $\mathbf{x}=c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}$ and $\mathbf{y}=d_{1} \mathbf{b}_{1}+\ldots+d_{n} \mathbf{b}_{n}$. Then, $[\mathbf{x}]_{\mathcal{B}}=\left(c_{1}, \ldots, c_{n}\right)$ and $[\mathbf{y}]_{\mathcal{B}}=\left(d_{1}, \ldots, d_{n}\right)$. Moreover, $\mathbf{x}+\mathbf{y}=\left(c_{1}+d_{1}\right) \mathbf{b}_{1}+\ldots+\left(c_{n}+b_{n}\right) \mathbf{b}_{n}$, and

$$
\begin{aligned}
{[\mathbf{x}+\mathbf{y}]_{\mathcal{B}} } & =\left(c_{1}+d_{1}, \ldots, c_{n}+d_{n}\right)=\left(c_{1}, \ldots, c_{n}\right)+\left(d_{1}, \ldots, d_{n}\right) \\
& =[\mathbf{x}]_{\mathcal{B}}+[\mathbf{y}]_{\mathcal{B}} .
\end{aligned}
$$

Also, $c \mathbf{x}=\left(c c_{1}\right) \mathbf{b}_{1}+\ldots+\left(c c_{n}\right) \mathbf{b}_{n}$, and

$$
\begin{aligned}
{[c \mathbf{x}]_{\mathcal{B}} } & =\left(c c_{1}, \ldots, c c_{n}\right)=c\left(c_{1}, \ldots, c_{n}\right) \\
& =c[\mathbf{x}]_{\mathcal{B}},
\end{aligned}
$$

and the coordinate mapping is therefore linear. To show that it is one-to-one, assume that $[\mathbf{x}]_{\mathcal{B}}=$ $\left(c_{1}, \ldots, c_{n}\right)=[\mathbf{y}]_{\mathcal{B}}$ for two vectors \mathbf{x} and \mathbf{y} in V. Then,

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n} \text { and } \mathbf{y}=c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}
$$

so $\mathbf{x}=\mathbf{y}$, which proves one-to-one-ness. To show that the coordinate mapping is onto, let $\left(c_{1}, \ldots, c_{n}\right)$ be a vector in \mathbb{R}^{n}. Then, $\left(c_{1}, \ldots, c_{n}\right)$ is the image of the vector $\mathbf{x}=c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}$ in V, that is, $[\mathbf{x}]_{\mathcal{B}}=\left(c_{1}, \ldots, c_{n}\right)$, which proves onto-ness.
(Note: To prove that V and \mathbb{R}^{n} are isomorphic for general vector spaces V, you cannot use the change-of-coordinates matrix $P_{\mathcal{B}}=\left[\mathbf{b}_{1} \ldots \mathbf{b}_{n}\right]$. This matrix is only defined if $V=\mathbb{R}^{n}$, that is, if the vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ are vectors in \mathbb{R}^{n} that can be written into a matrix!)

Problem 5 (20 points).

Let \mathbb{P} denote the vector space of all polynomials, and let \mathbb{P}_{2} be the set of all polynomials of degree at most 2 ; that is, $\mathbb{P}_{2}=\left\{\mathbf{p}(t): \mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}, a_{0}, a_{1}, a_{2}\right.$ real $\}$.
(a) Show that \mathbb{P}_{2} is a subspace of \mathbb{P}.
(b) Using coordinate vectors, show that the set \mathcal{B} given by

$$
\mathcal{B}=\left\{1+t^{2}, 2-t+3 t^{2}, 1+2 t-4 t^{2}\right\}
$$

is a basis for \mathbb{P}_{2}.
(c) Find the coordinate vector $[\mathbf{p}]_{\mathcal{B}}$ of the polynomial $\mathbf{p}(t)=-4-t^{2}$ relative to \mathcal{B}.
(d) Find the polynomial $\mathbf{q}(t)$ whose coordinate vector relative to \mathcal{B} is $[\mathbf{q}]_{\mathcal{B}}=(-3,1,2)$.

Solution.

(a) Since the zero polynomial $\mathbf{p}=\mathbf{0}$ is obtained for $a_{0}=a_{1}=a_{2}=0, \mathbb{P}_{2}$ contains the zero vector of \mathbb{P}. Given two polynomials $\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}$ and $\mathbf{q}(t)=b_{0}+b_{1} t+b_{2} t^{2}$ in \mathbb{P}_{2}, the sum

$$
(\mathbf{p}+\mathbf{q})(t)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) t+\left(a_{2}+b_{2}\right) t^{2}
$$

is in \mathbb{P}_{2}. Hence, \mathbb{P}_{2} is closed under vector addition. Also, for any scalar c,

$$
(c \mathbf{p})(t)=\left(c a_{0}\right)+\left(c a_{1}\right) t+\left(c a_{2}\right) t^{2}
$$

is in \mathbb{P}_{2}, and \mathbb{P}_{2} is closed under scalar multiplication. So, in sum, \mathbb{P}_{2} is a subspace of \mathbb{P}.
(b) The coordinate vectors of the polynomials $1+t^{2}, 2-t+3 t^{2}$, and $1+2 t-4 t^{2}$ are ($1,0,1$), ($2,-1,3$), and ($1,2,-4$), respectively. (The entries in the coordinate vectors contain the coefficients of $1, t$, and t^{2}, respectively.) Since the matrix formed from these vectors is row equivalent to the identity matrix I_{3},

$$
\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & -1 & 2 \\
1 & 3 & -4
\end{array}\right] \sim \ldots \sim\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 1 & -2 \\
0 & 0 & -3
\end{array}\right] \sim \ldots \sim I_{3}
$$

the coordinate vectors are linearly independent and span \mathbb{R}^{3}. By the isomorphism between \mathbb{P}_{2} and \mathbb{R}^{3}, the corresponding polynomials $1+t^{2}, 2-t+3 t^{2}$, and $1+2 t-4 t^{2}$ are linearly independent and span \mathbb{P}_{2}. Therefore, they form a basis for \mathbb{P}_{2}.
(c) To find $[\mathbf{p}]_{\mathcal{B}}$, we have to determine how $\mathbf{p}(t)=-4-t^{2}=(-4) 1+(0) t+(-1) t^{2}$ can be combined from the polynomials in \mathcal{B}. This can be done by solving the linear system obtained from the corresponding coordinate vectors:

$$
\left[\begin{array}{rrrr}
1 & 2 & 1 & -4 \\
0 & -1 & 2 & 0 \\
1 & 3 & -4 & -1
\end{array}\right] \sim \ldots \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

Hence, $[\mathbf{p}]_{\mathcal{B}}=(1,-2,1)$.
(d) To find the polynomial \mathbf{q} corresponding to $[\mathbf{q}]_{\mathcal{B}}=(-3,1,2)$, we just compute the matrix-vector product

$$
\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & -1 & 2 \\
1 & 3 & -4
\end{array}\right]\left(\begin{array}{r}
-3 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{r}
1 \\
3 \\
-8
\end{array}\right) .
$$

Therefore, $\mathbf{q}(t)=1+3 t-8 t^{2}$.

Problem 6 (20 points).

Determine whether the statements below are true or false. (Justify your answers: If a statement is true, explain why it is true; if it is false, explain why, or give a counter-example for which it is false.)
(a) If A and B are $m \times n$-matrices, then both $A B^{T}$ and $A^{T} B$ are defined.
(b) The determinant of an $n \times n$-matrix A is the product of the diagonal entries in A.
(c) For A an $m \times n$-matrix, $\operatorname{Col} A$ is the set of all solutions of the linear system $A \mathbf{x}=\mathbf{b}$.
(d) For \mathbf{x} in \mathbb{R}^{n}, the coordinate vector $[\mathbf{x}]_{\mathcal{E}}$ of \mathbf{x} relative to the standard basis \mathcal{E} is \mathbf{x} itself.

Solution.

(a) True. For A and $B m \times n, A^{T}$ and B^{T} are $n \times m$, so both matrix products $A B^{T}$ and $A^{T} B$ are defined: The number of columns of A, n, equals the number of rows of B^{T}; the number of columns of A^{T}, m, equals the number of rows of B.
(b) False; this statement is only true if A is a triangular matrix. Take e.g.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]
$$

then, $\operatorname{det} A=(1)(0)-(1)(2)=-2$, whereas the product of the diagonal elements is 0 .
(c) False. The column space $\operatorname{Col} A$ is the set of all linear combinations of the columns of A, that is,

$$
\operatorname{Col} A=\left\{\mathbf{b} \text { in } \mathbb{R}^{m}: A \mathbf{x}=\mathbf{b} \text { for some } \mathbf{x} \text { in } \mathbb{R}^{n}\right\}
$$

The solution set of $A \mathbf{x}=\mathbf{b}$ would be the set of all \mathbf{x} in \mathbb{R}^{n} such that $A \mathbf{x}=\mathbf{b}$!
(d) True. In general, the coordinate vector of x in \mathbb{R}^{n} relative to a basis \mathcal{B} is related to x by $P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}=\mathbf{x}$. For $\mathcal{B}=\mathcal{E}$, the change-of-coordinates matrix $P_{\mathcal{E}}$ is the identity matrix I_{n}. Hence, $\mathbf{x}=I_{n}[\mathbf{x}]_{\mathcal{E}}=[\mathbf{x}]_{\mathcal{E}}$.

