MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam

Prof. Nikola Popovic, October 5, 2006, 09:30am - 10:50am

Problem 1 (15 points).

Determine h and k such that the solution set of

$$x_1 + 3x_2 = k$$
$$4x_1 + hx_2 = 8$$

(a) is empty, (b) contains a unique solution, and (c) contains infinitely many solutions. (Give separate answers for each part, and *justify* them.)

Solution.

Row reducing the augmented matrix of the linear system, we find

 $\left[\begin{array}{rrrr} 1 & 3 & k \\ 4 & h & 8 \end{array}\right] \sim \left[\begin{array}{rrrr} 1 & 3 & k \\ 0 & h-12 & 8-4k \end{array}\right].$

Hence, we have the following possibilities:

- (a) The system is inconsistent (i.e., the solution set is empty) if the third column of the augmented matrix contains a pivot. This is the case if h 12 = 0 and $8 4k \neq 0$, that is, if h = 12 and $k \neq 2$.
- (b) The system has a unique solution if the first two columns contain pivots, that is, if both x_1 and x_2 are basic variables. Hence, $h \neq 12$ must hold for the second column to contain a pivot. Note that k is arbitrary.
- (c) The system has infinitely many solutions if x_2 is a free variable and if the third column does not contain a pivot, which is the case for h = 12 and k = 2.

Problem 2 (15 points).

Determine if the following vectors are linearly dependent or linearly independent. (*Justify* your answers.)

(a)
$$\left\{ \begin{pmatrix} -4\\0\\1\\5 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\4\\3\\6 \end{pmatrix} \right\},$$
 (b)
$$\left\{ \begin{pmatrix} 4\\4 \end{pmatrix}, \begin{pmatrix} -1\\3 \end{pmatrix}, \begin{pmatrix} 2\\5 \end{pmatrix}, \begin{pmatrix} 8\\1 \end{pmatrix} \right\},$$

(c)
$$\left\{ \begin{pmatrix} -8\\12\\-4 \end{pmatrix}, \begin{pmatrix} 2\\-3\\-1 \end{pmatrix} \right\}.$$

Solution.

(a) The set is linearly dependent, since it contains the zero vector **0**. (Any set containing the zero vector is linearly dependent.)

- (b) The set is linearly dependent, since it consists of four vectors in \mathbb{R}^2 . (Any set containing more vectors than each vector has entries is linearly dependent.)
- (c) The set is linearly independent, since it contains two vectors neither of which is the zero vector, and since these vectors are not multiples of each other.

Problem 3 (15 points).

Let the matrix A be given by

$$\begin{bmatrix} 1 & 3 & -2 & 2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix},$$

- (a) Determine whether the columns of A span \mathbb{R}^4 .
- (b) Based on your answer in (a), decide whether the matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution for *every* \mathbf{b} in \mathbb{R}^4 . (*Justify* your answer.)

Solution.

(a) To determine whether the columns of A span \mathbb{R}^4 , we row reduce A,

ſ	- 1	3	-2	2^{-}		1	3	-2	2		1	3	-2	2]
	0	1	1	-5	~	0	1	1	-5	~	0	1	1	-5
	1	2	-3	7		0	-1	-1	5		0	0	0	0
	-2	-8	2	-1		0	-2	-2	3		0	0	0	-7

The row reduced matrix contains three pivot positions and therefore does not have a pivot in every row. Hence, the columns of A do not span \mathbb{R}^4 , see Theorem 4.

(b) No, $A\mathbf{x} = \mathbf{b}$ does not have a solution for every \mathbf{b} in \mathbb{R}^4 , since that would be equivalent to the columns of A spanning \mathbb{R}^4 , again by Theorem 4.

Problem 4 (20 points).

Consider the following system of linear equations,

$$x_1 - 3x_2 - 4x_3 = b_1$$

-3x₁ + 3x₂+6x₃ = b₂
5x₁ - 3x₂-8x₃ = b₃,

where b_1 , b_2 , and b_3 are real numbers.

- (a) Write the system first as a vector equation and then as a matrix equation.
- (b) Show that the system is *not* consistent for all possible $\mathbf{b} = (b_1, b_2, b_3)$, and describe the set of all b for which it *does* have a solution.
- (c) Find the solution sets of the system for $\mathbf{b} = (0, 0, 0)$ and for $\mathbf{b} = (2, 0, -2)$. Write them in parametric vector form; then, illustrate and compare them geometrically.

Solution.

(a) The equivalent vector equation is

$$x_1 \begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix} + x_2 \begin{pmatrix} -3 \\ 3 \\ -3 \end{pmatrix} + x_3 \begin{pmatrix} -4 \\ 6 \\ -8 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix},$$

while the corresponding matrix equation is

$$\begin{bmatrix} 1 & -3 & -4 \\ -3 & 3 & 6 \\ 5 & -3 & -8 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

(b) To determine for which choices of $\mathbf{b} = (b_1, b_2, b_3)$ the system is consistent, we row reduce the augmented matrix:

$$\begin{bmatrix} 1 & -3 & -4 & b_1 \\ -3 & 3 & 6 & b_2 \\ 5 & -3 & -8 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -4 & b_1 \\ 0 & -6 & -6 & b_2 + 3b_1 \\ 0 & 12 & 12 & b_3 - 5b_1 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -4 & b_1 \\ 0 & -6 & -6 & b_2 + 3b_1 \\ 0 & 0 & 0 & b_3 - 5b_1 + 2b_2 + 6b_1 \end{bmatrix}$$

The system is inconsistent if the last column contains a pivot, that is, if $b_3 - 5b_1 + 2b_2 + 6b_1 = b_1 + 2b_2 + b_3 \neq 0$. The set of all b for which the system *is* consistent is described by $b_1 + 2b_2 + b_3 = 0$, which is a plane in \mathbb{R}^3 .

(c) To explicitly find solutions of the system for specific choices of b, we reduce the augmented matrix to reduced echelon form:

$$\begin{bmatrix} 1 & -3 & -4 & b_1 \\ 0 & -6 & -6 & b_2 + 3b_1 \\ 0 & 0 & 0 & b_1 + 2b_2 + b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -4 & b_1 \\ 0 & 1 & 1 & -\frac{3b_1 + b_2}{6} \\ 0 & 0 & 0 & b_1 + 2b_2 + b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & b_1 - \frac{3b_1 + b_2}{2} \\ 0 & 1 & 1 & -\frac{b_1 + 3b_2}{6} \\ 0 & 0 & 0 & b_1 + 2b_2 + b_3 \end{bmatrix}$$

For $\mathbf{b} = (0, 0, 0)$, this matrix becomes

$$\left[\begin{array}{rrrr} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right];$$

the general solution is given by $x_1 = x_3$, $x_2 = -x_3$, and x_3 free. In parametric vector form, this corresponds to

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_3 \\ -x_3 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix},$$

which defines a line in \mathbb{R}^3 through the origin. For $\mathbf{b} = (2, 0, -2)$, the augmented row reduced matrix becomes

$$\left[\begin{array}{rrrr} 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right];$$

the general solution is $x_1 = -1 + x_3$, $x_2 = -1 - x_3$, and x_3 free. In parametric vector form, this can be written as

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1+x_3 \\ -1-x_3 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix},$$

which is a line through the point (-1, -1, 0). Hence, the solution sets of the homogeneous system and the nonhomogeneous system are parallel lines in \mathbb{R}^3 offset by the vector (-1, -1, 0).

Problem 5 (15 points).

Let the transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$, $\mathbf{x} \mapsto T(\mathbf{x})$ be defined by

$$T(\mathbf{x}) = T(x_1, x_2) = (-3x_1 + 2x_2, x_1 - 4x_2, x_2).$$

- (a) Determine whether T is linear, and find the standard matrix of T.
- (b) Determine whether T is one-to-one and onto. (Justify your answers.)

Solution.

(a) Since

$$T(x_1, x_2) = \begin{pmatrix} -3x_1 + 2x_2 \\ x_1 - 4x_2 \\ x_2 \end{pmatrix} = x_1 \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix} = \begin{bmatrix} -3 & 2 \\ 1 & -4 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

the standard matrix of T is precisely

$$A = \begin{bmatrix} -3 & 2\\ 1 & -4\\ 0 & 1 \end{bmatrix}$$

Therefore, also, T must be linear, since every transformation that can be described by a matrix is linear.

(b) T is one-to-one, since the columns of A are linearly independent (they are non-zero, and not multiples of each other). T is not onto, since the columns of A do not span ℝ³. (Alternatively, T is one-to-one since A contains a pivot in every column; however, it is not onto, since A does not contain a pivot in every row.)

Problem 6 (20 points).

Determine whether the statements below are true or false. (*Justify* your answers: If a statement is true, explain why it is true; if it is false, explain why, or give a counter-example for which it is false.)

- (a) Two linear systems are equivalent if they have the same solution set.
- (b) Not every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.

- (c) A linear combination of vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ can always be written in the form $A\mathbf{x}$ for a suitable matrix A and vector \mathbf{x} .
- (d) The echelon form of a matrix is unique.

Solution.

- (a) True, by the definition of equivalent systems.
- (b) False. Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation. (The corresponding matrix is the standard matrix of the transformation.)
- (c) True, by the definition of the matrix-vector product:

$$x_1\mathbf{a}_1 + \ldots + x_n\mathbf{a}_n = [\mathbf{a}_1 \ldots \mathbf{a}_n] \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

with $A = [\mathbf{a}_1 \dots \mathbf{a}_n].$

(d) False, the *reduced* echelon form of a matrix is unique. For example, the matrices

$$\left[\begin{array}{rrr}1 & 3\\0 & -2\end{array}\right] \qquad \text{and} \qquad \left[\begin{array}{rrr}1 & 3\\0 & 1\end{array}\right]$$

are both echelon forms of

$$\left[\begin{array}{rrr}1 & 3\\2 & 4\end{array}\right].$$