MA 124 CALCULUS II C1, Solutions to Second Midterm Exam

Prof. Nikola Popovic, March 30, 2006, 08:00am - 09:20am

Problem 1 (15 points).

Let $C(t)$ be the concentration of a drug in the bloodstream. As the body eliminates the drug, $C(t)$ decreases at a rate that is proportional to the amount of drug that is present at the time, i.e.,

$$
\frac{d C}{d t}=-k C \quad \text { with } k>0 \text { constant. }
$$

(a) If C_{0} is the concentration given at time $t=0$, find the concentration at time t.
(b) Find the value of k if the initial concentration is $C_{0}=50$ and if $C=25$ at time $t=30$.

Solution.

(a) We know that the solution to the initial value problem $\frac{d C}{d t}=-k C, C(0)=C_{0}$ is given by $C(t)=C_{0} \cdot \mathrm{e}^{-k t}$. (This is the "law of natural decay", and follows from the fact that the differential equation is separable:

$$
\begin{aligned}
\frac{d C}{C} & =-k d t \\
\int \frac{d C}{C} & =-\int k d t \\
\ln |C| & =-k t+A \\
|C| & =\mathrm{e}^{-k t+A}=\mathrm{e}^{A} \cdot \mathrm{e}^{-k t} \\
C(t) & =B \cdot \mathrm{e}^{-k t} \quad\left(\text { with } B= \pm \mathrm{e}^{A}\right)
\end{aligned}
$$

To fix B, note that $C(0)=C_{0}$ by assumption; therefore, $C_{0}=B \cdot \mathrm{e}^{-k 0}=B$.)
(b) For $C_{0}=50$, we find with (a) that the solution is given by $C(t)=50 \cdot \mathrm{e}^{-k t}$. To fix k, we have to use the fact that $C(30)=25$, i.e., that the solution passes through the point $(t, C)=(30,25)$. Hence,

$$
\begin{aligned}
25 & =50 \cdot \mathrm{e}^{-k 30} \\
\frac{1}{2} & =\mathrm{e}^{-k 30} \\
\ln \frac{1}{2} & =-k 30 \\
k & =-\frac{1}{30} \ln \frac{1}{2}=\frac{1}{30} \ln 2 \approx 0.0231 .
\end{aligned}
$$

Problem 2 (15 points).

Find the solution of the differential equation

$$
\frac{d x}{d t}=(1-t) \cdot(1+x)
$$

that passes through the point $(t, x)=(0,0)$.

Solution. The differential equation is separable, since the right-hand side is the product of a function of t (the independent variable) times a function of x (the dependent variable). Hence,

$$
\begin{aligned}
\frac{d x}{1+x} & =(1-t) d t \\
\int \frac{d x}{1+x} & =\int(1-t) d t \\
\ln |1+x| & =t-\frac{t^{2}}{2}+C \\
|1+x| & =\mathrm{e}^{t-\frac{t^{2}}{2}+C}=\mathrm{e}^{C} \cdot \mathrm{e}^{t-\frac{t^{2}}{2}} \\
1+x & =A \cdot \mathrm{e}^{t-\frac{t^{2}}{2}} \quad\left(\text { with } A= \pm \mathrm{e}^{C}\right) \\
x(t) & =A \cdot \mathrm{e}^{t-\frac{t^{2}}{2}}-1 .
\end{aligned}
$$

This is the general solution of the equation. To find the solution which passes through the point $(0,0)$, we have to fix the constant A :

$$
x(0)=0=A \cdot \mathrm{e}^{0-\frac{\mathrm{o}^{2}}{2}}-1=A-1 .
$$

Therefore, $A=1$, and the unique solution for which $x(0)=0$ is given by $x(t)=\mathrm{e}^{t-\frac{t^{2}}{2}}-1$.

Problem 3 (20 points).

Let

$$
f(x)=\left\{\begin{array}{cl}
\frac{\pi}{20} \sin \left(\frac{\pi x}{10}\right) & \text { if } 0 \leq x \leq 10 \\
0 & \text { if } x<0 \text { or } x>10
\end{array}\right.
$$

(a) Show that $f(x)$ is a probability density function.
(b) Find $P(X<4)$.

Solution.

(a) To show that $f(x)$ is a probability density function, we have to show

$$
f(x) \geq 0 \quad \text { for all } x \quad \text { and } \quad \int_{-\infty}^{\infty} f(x) d x=1
$$

Since $f(x)=0$ for $x<0$ or $x>10$, we only have to consider $x \in[0,10]$. To show that $f(x) \geq 0$ there, note that for $0 \leq x \leq 10$, there holds $0 \leq \frac{\pi x}{10} \leq \pi$. Since the sine function is positive on the interval $(0, \pi)$ and zero at 0 and at π and since $\frac{\pi}{20}>0$, it follows that $f(x) \geq 0$ for $0 \leq x \leq 10$. To show that the second requirement holds, we compute

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{10} \frac{\pi}{20} \sin \left(\frac{\pi x}{10}\right) d x=\frac{\pi}{20} \int_{0}^{\pi} \frac{10}{\pi} \sin (u) d u=\left.\frac{1}{2}(-\cos (u))\right|_{0} ^{\pi}=1 .
$$

(Here, we have made the substitution $u=\frac{\pi}{10} x, d u=\frac{\pi}{10} d x$ to evaluate the integral.) Therefore, $f(x)$ is a probability density function.
(b) Since $f(x)=0$ for $x<0$, we have

$$
P(X<4)=\int_{0}^{4} \frac{\pi}{20} \sin \left(\frac{\pi x}{10}\right) d x=\left.\frac{1}{2}(-\cos (u))\right|_{0} ^{\frac{2 \pi}{5}} \approx 0.3455 .
$$

Hence, the probability that X is less than 4 is about 34.55%.

Problem 4 (15 points).

Let the curve C be defined by

$$
y(x)=\int_{1}^{x} \sqrt{\sqrt{t}-1} d t \quad \text { for } 1 \leq x \leq 16
$$

Find the length L of C. (Hint: Apply the Fundamental Theorem of Calculus to find $\frac{d y}{d x}$.)
Solution. The curve C is parametrized by x, with $x \in[1,16]$. Hence, to find the length of C, we make use of the formula

$$
L=\int_{1}^{16} \sqrt{\left(\frac{d y}{d x}\right)^{2}+1} d x
$$

To compute $\frac{d y}{d x}$, we apply the Fundamental Theorem of Calculus:

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\int_{1}^{x} \sqrt{\sqrt{t}-1} d t\right)=\sqrt{\sqrt{x}-1}
$$

Therefore, $\left(\frac{d y}{d x}\right)^{2}=\sqrt{x}-1$, and

$$
L=\int_{1}^{16} \sqrt{\sqrt{x}-1+1} d x=\int_{1}^{16} x^{\frac{1}{4}} d x=\left.\frac{4}{5} \cdot x^{\frac{5}{4}}\right|_{1} ^{16}=\frac{124}{15}=24.8 .
$$

Problem 5 (20 points).

Let the sequence $\left\{a_{n}\right\}$ be defined by $a_{n}=\frac{2 n-3}{3 n+4}$.
(a) Determine whether the sequence is increasing, decreasing, or not monotonic.
(b) Determine whether the sequence is bounded.

Solution.

(a) Computing the first four terms of the sequence, we find $a_{1}=-\frac{1}{7} \approx-0.1429, a_{2}=\frac{1}{10}=0.1$, $a_{3}=\frac{3}{13} \approx 0.2308$, and $a_{4}=\frac{5}{16}=0.3125$. Hence, we guess that $\left\{a_{n}\right\}$ is increasing. To prove our guess, we write

$$
\begin{aligned}
a_{n} & <a_{n+1} \\
\Leftrightarrow \frac{2 n-3}{3 n+4} & <\frac{2(n+1)-3}{3(n+1)+4} \\
\Leftrightarrow(2 n-3) \cdot(3 n+7) & <(2 n-1) \cdot(3 n+4) \quad \text { (by cross-multiplication) } \\
\Leftrightarrow 6 n^{2}-9 n+14 n-21 & <6 n^{2}-3 n+8 n-4 \\
\Leftrightarrow-21 & <-4 .
\end{aligned}
$$

Since the last statement is true, all the preceding statements are also true (as they are all equivalent). Hence, $a_{n}<a_{n+1}$, and we have proved that $\left\{a_{n}\right\}$ is increasing. (An alternative way to show that $\left\{a_{n}\right\}$ is increasing is to consider the corresponding function $f(x)=\frac{2 x-3}{3 x+4}$, and to prove that $f(x)$ is increasing for $x>0$, i.e., that $f^{\prime}(x)>0$ holds:

$$
f^{\prime}(x)=\frac{2 \cdot(3 x+4)-(2 x-3) \cdot 3}{(3 x+4)^{2}}=\frac{17}{(3 x+4)^{2}}>0
$$

and since $a_{n}=f(n)$, the sequence $\left\{a_{n}\right\}$ is also increasing.)
(b) For $\left\{a_{n}\right\}$ to be bounded, it has to be bounded both above and below. Since $\left\{a_{n}\right\}$ is increasing, the smallest term in the sequence is the first term a_{1}. Hence, the sequence is bounded below by $a_{1}=-\frac{1}{7}$, i.e., $a_{n} \geq-\frac{1}{7}$ for every $n \geq 1$. To show that the sequence is bounded above, we estimate

$$
a_{n}=\frac{2 n-3}{3 n+4}<\frac{2 n-3}{3 n}<\frac{2 n}{3 n}=\frac{2}{3} \quad \text { for every } n \geq 1
$$

Hence, the sequence is bounded above by $\frac{2}{3}$. (Alternatively, one can argue that $\lim _{n \rightarrow \infty} a_{n}=$ $\frac{2}{3}$ and, hence, that the sequence is bounded above by its limit, since it is increasing and approaching that limit from below.)

Problem 6 (15 points).

Determine whether the statements below are true or false. If a statement is true, explain why; if it is false, explain why or give an example that disproves the statement.
(a) The function $f(x)=\frac{\ln x}{x}$ is a solution of the differential equation $x^{2} y^{\prime}+x y=1$.
(b) The differential equation $\frac{d y}{d x}=x-2 y$ is separable.
(c) Every monotonic sequence is convergent.

Solution.

(a) TRUE. To verify that $y=f(x)=\frac{\ln x}{x}$ is a solution of the given equation, we have to plug y as well as y^{\prime} into the equation and see whether it is satisfied. Compute

$$
y^{\prime}=f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-\ln x \cdot 1}{x^{2}}=\frac{1-\ln x}{x^{2}} ;
$$

then,

$$
x^{2} y^{\prime}+x y=x^{2} \cdot \frac{1-\ln x}{x^{2}}+x \cdot \frac{\ln x}{x}=1-\ln x+\ln x=1,
$$

as required.
(b) FALSE. For a differential equation of the form $\frac{d y}{d x}=F(x, y)$ to be separable, we have to be able to write its right-hand side as a product of two functions $f(x)$ and $g(y)$ which only depend on x and y, respectively: $\frac{d y}{d x}=f(x) \cdot g(y)$. In our case, however, the right-hand side can only be written as the difference of two such functions.
(c) FALSE. A sequence $\left\{a_{n}\right\}$ can be monotonic (i.e., increasing or decreasing) but not converge to any limit if it increases or decreases without bound, i.e., if $\lim _{n \rightarrow \infty} a_{n}= \pm \infty$. Counterexamples are e.g. $a_{n}=n$ (increasing, but $\lim _{n \rightarrow \infty} n=\infty$) or $a_{n}=-\mathrm{e}^{n}$ (decreasing, but $\left.\lim _{n \rightarrow \infty}\left(-\mathrm{e}^{n}\right)=-\infty\right)$.

