
MA 124 CALCULUS II C1, Solutions to Second Midterm Exam

Prof. Nikola Popovic, March 30, 2006, 08:00am - 09:20am

Problem 1 (15 points).
Let C(t) be the concentration of a drug in the bloodstream. As the body eliminates the drug, C(t)
decreases at a rate that is proportional to the amount of drug that is present at the time, i.e.,

dC

dt
= −kC with k > 0 constant.

(a) If C0 is the concentration given at time t = 0, find the concentration at time t.

(b) Find the value of k if the initial concentration is C0 = 50 and if C = 25 at time t = 30.

Solution.

(a) We know that the solution to the initial value problem dC
dt

= −kC, C(0) = C0 is given by
C(t) = C0 · e−kt. (This is the “law of natural decay”, and follows from the fact that the
differential equation is separable:

dC

C
= −k dt

∫

dC

C
= −

∫

k dt

ln |C| = −kt + A

|C| = e−kt+A = eA · e−kt

C(t) = B · e−kt (with B = ±eA).

To fix B, note that C(0) = C0 by assumption; therefore, C0 = B · e−k0 = B.)

(b) For C0 = 50, we find with (a) that the solution is given by C(t) = 50 · e−kt. To fix k,
we have to use the fact that C(30) = 25, i.e., that the solution passes through the point
(t, C) = (30, 25). Hence,

25 = 50 · e−k30

1

2
= e−k30

ln
1

2
= −k30

k = − 1

30
ln

1

2
=

1

30
ln 2 ≈ 0.0231.

Problem 2 (15 points).
Find the solution of the differential equation

dx

dt
= (1 − t) · (1 + x)

that passes through the point (t, x) = (0, 0).



Solution. The differential equation is separable, since the right-hand side is the product of a func-
tion of t (the independent variable) times a function of x (the dependent variable). Hence,

dx

1 + x
= (1 − t) dt

∫

dx

1 + x
=

∫

(1 − t) dt

ln |1 + x| = t − t2

2
+ C

|1 + x| = et− t
2

2
+C = eC · et− t

2

2

1 + x = A · et− t
2

2 (with A = ±eC)

x(t) = A · et− t
2

2 − 1.

This is the general solution of the equation. To find the solution which passes through the point
(0, 0), we have to fix the constant A:

x(0) = 0 = A · e0−
0
2

2 − 1 = A − 1.

Therefore, A = 1, and the unique solution for which x(0) = 0 is given by x(t) = et− t
2

2 − 1.

Problem 3 (20 points).
Let

f (x) =







π

20
sin

(

πx

10

)

if 0 ≤ x ≤ 10,

0 if x < 0 or x > 10.

(a) Show that f (x) is a probability density function.

(b) Find P (X < 4).

Solution.

(a) To show that f (x) is a probability density function, we have to show

f (x) ≥ 0 for all x and
∫

∞

−∞

f (x) dx = 1.

Since f (x) = 0 for x < 0 or x > 10, we only have to consider x ∈ [0, 10]. To show that
f (x) ≥ 0 there, note that for 0 ≤ x ≤ 10, there holds 0 ≤ πx

10
≤ π. Since the sine function is

positive on the interval (0, π) and zero at 0 and at π and since π
20

> 0, it follows that f (x) ≥ 0
for 0 ≤ x ≤ 10. To show that the second requirement holds, we compute

∫

∞

−∞

f (x) dx =
∫ 10

0

π

20
sin

(

πx

10

)

dx =
π

20

∫ π

0

10

π
sin (u) du =

1

2
( − cos (u))

∣

∣

∣

∣

π

0

= 1.

(Here, we have made the substitution u = π
10

x, du = π
10

dx to evaluate the integral.) There-
fore, f (x) is a probability density function.

(b) Since f (x) = 0 for x < 0, we have

P (X < 4) =
∫ 4

0

π

20
sin

(

πx

10

)

dx =
1

2
( − cos (u))

∣

∣

∣

∣

2π

5

0

≈ 0.3455.

Hence, the probability that X is less than 4 is about 34.55%.



Problem 4 (15 points).
Let the curve C be defined by

y(x) =
∫ x

1

√√
t − 1 dt for 1 ≤ x ≤ 16.

Find the length L of C.
(

Hint: Apply the Fundamental Theorem of Calculus to find
dy

dx
.
)

Solution. The curve C is parametrized by x, with x ∈ [1, 16]. Hence, to find the length of C, we
make use of the formula

L =
∫ 16

1

√

(dy

dx

)2

+ 1 dx.

To compute dy

dx
, we apply the Fundamental Theorem of Calculus:

dy

dx
=

d

dx

(

∫ x

1

√√
t − 1 dt

)

=
√√

x − 1.

Therefore, ( dy

dx
)2 =

√
x − 1, and

L =
∫ 16

1

√√
x − 1 + 1 dx =

∫ 16

1

x
1

4 dx =
4

5
· x 5

4

∣

∣

∣

∣

16

1

=
124

15
= 24.8.

Problem 5 (20 points).

Let the sequence {an} be defined by an =
2n − 3

3n + 4
.

(a) Determine whether the sequence is increasing, decreasing, or not monotonic.

(b) Determine whether the sequence is bounded.

Solution.

(a) Computing the first four terms of the sequence, we find a1 = −1

7
≈ −0.1429, a2 = 1

10
= 0.1,

a3 = 3

13
≈ 0.2308, and a4 = 5

16
= 0.3125. Hence, we guess that {an} is increasing. To prove

our guess, we write

an < an+1

⇔ 2n − 3

3n + 4
<

2(n + 1) − 3

3(n + 1) + 4
⇔ (2n − 3) · (3n + 7) < (2n − 1) · (3n + 4) (by cross-multiplication)

⇔ 6n2 − 9n + 14n − 21 < 6n2 − 3n + 8n − 4

⇔ −21 < −4.

Since the last statement is true, all the preceding statements are also true (as they are all
equivalent). Hence, an < an+1, and we have proved that {an} is increasing. (An alternative
way to show that {an} is increasing is to consider the corresponding function f (x) = 2x−3

3x+4
,

and to prove that f (x) is increasing for x > 0, i.e., that f ′(x) > 0 holds:

f ′(x) =
2 · (3x + 4) − (2x − 3) · 3

(3x + 4)2
=

17

(3x + 4)2
> 0,

and since an = f (n), the sequence {an} is also increasing.)



(b) For {an} to be bounded, it has to be bounded both above and below. Since {an} is increasing,
the smallest term in the sequence is the first term a1. Hence, the sequence is bounded below
by a1 = −1

7
, i.e., an ≥ −1

7
for every n ≥ 1. To show that the sequence is bounded above,

we estimate

an =
2n − 3

3n + 4
<

2n − 3

3n
<

2n

3n
=

2

3
for every n ≥ 1.

Hence, the sequence is bounded above by 2

3
. (Alternatively, one can argue that lim

n→∞

an =
2

3
and, hence, that the sequence is bounded above by its limit, since it is increasing and

approaching that limit from below.)

Problem 6 (15 points).
Determine whether the statements below are true or false. If a statement is true, explain why; if it
is false, explain why or give an example that disproves the statement.

(a) The function f (x) =
ln x

x
is a solution of the differential equation x2y′ + xy = 1.

(b) The differential equation
dy

dx
= x − 2y is separable.

(c) Every monotonic sequence is convergent.

Solution.

(a) TRUE. To verify that y = f (x) = ln x
x

is a solution of the given equation, we have to plug y

as well as y′ into the equation and see whether it is satisfied. Compute

y′ = f ′(x) =
1

x
· x − ln x · 1

x2
=

1 − ln x

x2
;

then,

x2y′ + xy = x2 · 1 − ln x

x2
+ x · ln x

x
= 1 − ln x + ln x = 1,

as required.

(b) FALSE. For a differential equation of the form dy

dx
= F (x, y) to be separable, we have to

be able to write its right-hand side as a product of two functions f (x) and g(y) which only
depend on x and y, respectively: dy

dx
= f (x) · g(y). In our case, however, the right-hand side

can only be written as the difference of two such functions.

(c) FALSE. A sequence {an} can be monotonic (i.e., increasing or decreasing) but not converge
to any limit if it increases or decreases without bound, i.e., if lim

n→∞

an = ±∞. Counter-
examples are e.g. an = n (increasing, but lim

n→∞

n = ∞) or an = −en (decreasing, but
lim

n→∞

(−en) = −∞).


