MA 124 CALCULUS II C1, Solutions to First Midterm Exam

Prof. Nikola Popovic, February 16, 2006, 08:00am - 09:20am

Problem 1 (15 points).

Determine whether the statements below are true or false. If a statement is true, explain why; if it is false, give a counter-example.
(a) If f and g are continuous on $[a, b]$, then

$$
\int_{a}^{b}[f(x) \cdot g(x)] d x=\left(\int_{a}^{b} f(x) d x\right) \cdot\left(\int_{a}^{b} g(x) d x\right) .
$$

(b) If f is a continuous, decreasing function on $[a, \infty)$ and $\lim _{x \rightarrow \infty} f(x)=0$, then $\int_{a}^{\infty} f(x) d x$ is convergent.
(c) All continuous functions have antiderivatives.

Solution.

(a) FALSE. Take e.g. $f(x)=x, g(x)=x$, and $[a, b]=[0,1]$. Then,

$$
\int_{a}^{b}[f(x) \cdot g(x)] d x=\int_{0}^{1} x \cdot x d x=\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}
$$

but

$$
\left(\int_{a}^{b} f(x) d x\right) \cdot\left(\int_{a}^{b} g(x) d x\right)=\left(\int_{0}^{1} x d x\right) \cdot\left(\int_{0}^{1} x d x\right)=\left.\left.\frac{x^{2}}{2}\right|_{0} ^{1} \cdot \frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} .
$$

(b) FALSE. Take e.g. $f(x)=\frac{1}{x}$ and $a=1$; then, $f(x)$ is continuous on $[1, \infty), \lim _{x \rightarrow \infty} f(x)=0$, and $f(x)$ is decreasing on $[1, \infty)$ (since $f^{\prime}(x)=-\frac{1}{x^{2}}<0$), but

$$
\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln x\right|_{1} ^{t}=\lim _{t \rightarrow \infty} \ln t=\infty .
$$

Hence, the improper integral diverges.
(c) TRUE. By the Fundamental Theorem of Calculus, Part I, we know that if $f(x)$ is continuous on $[a, b]$,

$$
g(x)=\int_{a}^{x} f(t) d t
$$

is an antiderivative of f, i.e., $g^{\prime}(x)=f(x)$. (Note that this does not necessarily imply that we can compute g explicitly; take e.g. $f(x)=\mathrm{e}^{x^{2}}$. However, even in that case, we know that g exists.)

Problem 2 (15 points).

Find the derivative of the function

$$
F(x)=\int_{\sqrt{x}}^{x} \frac{\mathrm{e}^{t}}{t} d t
$$

Solution.

We split up the integral into two integrals, and rewrite $F(x)$ as

$$
F(x)=\int_{\sqrt{x}}^{0} \frac{\mathrm{e}^{t}}{t} d t+\int_{0}^{x} \frac{\mathrm{e}^{t}}{t} d t=-\int_{0}^{\sqrt{x}} \frac{\mathrm{e}^{t}}{t} d t+\int_{0}^{x} \frac{\mathrm{e}^{t}}{t} d t
$$

Since the upper limit of integration in the first integral is a function of x, we define $u=\sqrt{x}$; by the Fundamental Theorem of Calculus and the Chain Rule, we then have

$$
F^{\prime}(x)=\frac{d}{d x}\left(-\int_{0}^{\sqrt{x}} \frac{\mathrm{e}^{t}}{t} d t+\int_{0}^{x} \frac{\mathrm{e}^{t}}{t} d t\right)=-\frac{d}{d u}\left(\int_{0}^{u} \frac{\mathrm{e}^{t}}{t} d t\right) \cdot \frac{d u}{d x}+\frac{\mathrm{e}^{x}}{x} .
$$

Since $\frac{d u}{d x}=\frac{1}{2} \frac{1}{\sqrt{x}}$,

$$
F^{\prime}(x)=-\frac{\mathrm{e}^{u}}{u} \cdot \frac{1}{2} \frac{1}{\sqrt{x}}+\frac{\mathrm{e}^{x}}{x}=-\frac{\mathrm{e}^{\sqrt{x}}}{2 x}+\frac{\mathrm{e}^{x}}{x} .
$$

Problem 3 (15 points).

(a) Express $\int_{1}^{2}\left(x^{2}-1\right) d x$ as a Riemann sum with n sample points. (Take the sample points to be the right end points.)
(b) Evaluate the sum in the limit as $n \rightarrow \infty$.
(Some useful identities:

$$
\left.\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2} \cdot\right)
$$

Solution.

(a) To set up the n-th Riemann sum, we divide the interval [1,2] into subintervals of width $\Delta x=\frac{2-1}{n}=\frac{1}{n}$. The end points of these intervals are given by $x_{i}=1+i \cdot \Delta x=1+\frac{i}{n}$. Hence, the Riemann sum corresponding to the choice of sample points $x_{i}^{*}=x_{i}$ is

$$
\begin{aligned}
R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \cdot & \Delta x=\sum_{i=1}^{n}\left(x_{i}^{2}-1\right) \cdot \Delta x=\sum_{i=1}^{n}\left[\left(1+\frac{i}{n}\right)^{2}-1\right] \cdot \frac{1}{n} \\
= & \sum_{i=1}^{n}\left[1+\frac{2 i}{n}+\frac{i^{2}}{n^{2}}-1\right] \cdot \frac{1}{n}=\frac{1}{n^{2}} \cdot \sum_{i=1}^{n}\left[2 i+\frac{i^{2}}{n}\right] .
\end{aligned}
$$

(b) To evaluate $\lim _{n \rightarrow \infty} R_{n}$, use the given identities to compute

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \cdot\left[2 \sum_{i=1}^{n} i+\frac{1}{n} \sum_{i=1}^{n} i^{2}\right]=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \cdot\left[2 \frac{n(n+1)}{2}+\frac{1}{n} \frac{n(n+1)(2 n+1)}{6}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \cdot\left[n^{2}+n+\frac{2 n^{2}+3 n+1}{6}\right]=\lim _{n \rightarrow \infty}\left[1+\frac{1}{n}+\frac{2}{6}+\frac{3}{6 n}+\frac{1}{6 n^{2}}\right]=1+\frac{1}{3}=\frac{4}{3} .
\end{aligned}
$$

Problem 4 (20 points).

Determine whether or not the following integral is convergent; if it is convergent, compute its value.

$$
\int_{0}^{2} z^{2} \ln z d z
$$

Solution.

First, note that the integral is improper of Type II, since the integrand is discontinuous at the lower limit (i.e., at 0): $\lim _{z \rightarrow 0^{+}} \ln z=-\infty$. Hence, to determine whether the integral is convergent, we have to check whether the limit

$$
\lim _{t \rightarrow 0^{+}} \int_{t}^{2} z^{2} \ln z d z
$$

exists (is finite). Since for any $t>0$, the above integral is an ordinary definite integral, we can evaluate it using Integration by Parts (with $f(z)=\ln z, g^{\prime}(z)=z^{2}$, and, hence, $f^{\prime}(z)=\frac{1}{z}, g(z)=$ $\left.\frac{z^{3}}{3}\right)$:

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} \int_{t}^{2} z^{2} \ln z d z & =\lim _{t \rightarrow 0^{+}}\left[\left.\ln z \cdot \frac{z^{3}}{3}\right|_{t} ^{2}-\int_{t}^{2} \frac{1}{z} \cdot \frac{z^{3}}{3} d z\right] \\
=\lim _{t \rightarrow 0^{+}}\left[\frac{8}{3} \ln 2-\frac{t^{3}}{3} \ln t-\left.\frac{1}{3} \cdot \frac{z^{3}}{3}\right|_{t} ^{2}\right] & =\lim _{t \rightarrow 0^{+}}\left[\frac{8}{3} \ln 2-\frac{8}{9}-\frac{t^{3}}{3} \ln t+\frac{t^{3}}{9}\right] .
\end{aligned}
$$

Now, $\lim _{t \rightarrow 0^{+}} t^{3}=0$; however, $\lim _{t \rightarrow 0^{+}} t^{3} \ln t=0 \cdot \infty$, which is an indeterminate form. Hence, we have to apply l'Hospital's Rule to find

$$
\lim _{t \rightarrow 0^{+}} t^{3} \ln t=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{\frac{1}{t^{3}}}=\frac{\infty}{\infty}=\lim _{t \rightarrow 0^{+}} \frac{\frac{1}{t}}{-\frac{3}{t^{4}}}=-\lim _{t \rightarrow 0^{+}} \frac{t^{3}}{3}=0
$$

Therefore, the integral is convergent, and its value is $\frac{8}{3} \ln 2-\frac{8}{9}$.

Problem 5 (15 points).

Evaluate the following integrals.
(a)

$$
\int \frac{x+2}{\sqrt{x^{2}+4 x}} d x
$$

(b)

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos \theta}{1+\sin ^{2} \theta} d \theta
$$

Solution.

(a) We make the substitution $u=x^{2}+4 x$, since the differential $d u=(2 x+4) d x=2(x+2) d x$, which occurs in the integral (up to the factor 2). Hence,

$$
\int \frac{x+2}{\sqrt{x^{2}+4 x}} d x=\int \frac{x+2}{\sqrt{u}} \cdot \frac{d u}{2(x+2)}=\int \frac{1}{2 \sqrt{u}} d u=\sqrt{u}=\sqrt{x^{2}+4 x}+C .
$$

(Another possibility is to substitute $u=\sqrt{x^{2}+4 x}$.)
(b) Since the integrand is an even function and since the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is symmetric about 0 , we have

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos \theta}{1+\sin ^{2} \theta} d \theta=2 \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{1+\sin ^{2} \theta} d \theta
$$

We substitute $u=\sin \theta$, which implies $d u=\cos \theta d \theta$. For $\theta=0, u=\sin 0=0$, and for $\theta=\frac{\pi}{2}, u=\sin \frac{\pi}{2}=1$. Hence, we have

$$
2 \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{1+\sin ^{2} \theta} d \theta=2 \int_{0}^{1} \frac{1}{1+u^{2}} d u=\left.2 \arctan (u)\right|_{0} ^{1}=2\left(\frac{\pi}{4}-0\right)=\frac{\pi}{2}
$$

Problem 6 (20 points).

The solid S is obtained by rotating the region bounded by $y=\frac{x^{2}}{4}$ and $y=5-x^{2}$ about the x-axis.
(a) Sketch the region and the solid S.
(b) Sketch a typical disk, or washer (whichever might be required), and find the volume of S.

Solution (up to sketches).

(a) For the points of intersection of the two curves, we find $\frac{x^{2}}{4}=5-x^{2}$ and hence $x^{2}=4$ or $x= \pm 2$. The corresponding y-value is $5-(\pm 2)^{2}=1$; therefore, the points are given by $(-2,1)$ and $(2,1)$. We are concerned with the region enclosed by the two curves, i.e., with $\frac{x^{2}}{4} \leq y \leq 5-x^{2}$ for $-2 \leq x \leq 2$. The solid S is obtained by rotating that region about the x-axis.
(b) The cross-section of S with any plane P_{x} through $x \in[-2,2]$ is a washer with outer radius $5-x^{2}$ and inner radius $\frac{x^{2}}{4}$. The area of this washer is given by

$$
\begin{aligned}
A(x)=\pi\left[(\text { outer radius })^{2}-(\text { inner radius })^{2}\right] & =\pi\left[\left(5-x^{2}\right)^{2}-\left(\frac{x^{2}}{4}\right)^{2}\right] \\
& =\pi\left[25-10 x^{2}+\frac{15}{16} x^{4}\right]
\end{aligned}
$$

Therefore, the volume of S is

$$
\begin{aligned}
V=\int_{-2}^{2} A(x) d x=\pi \int_{-2}^{2} \underbrace{\left[25-10 x^{2}+\frac{15}{16} x^{4}\right]}_{\text {even }} & d x=2 \pi \int_{0}^{2}\left[25-10 x^{2}+\frac{15}{16} x^{4}\right] d x \\
= & \left.2 \pi\left[25 x-\frac{10}{3} x^{3}+\frac{3}{16} x^{5}\right]\right|_{0} ^{2}=\frac{176}{3} \pi
\end{aligned}
$$

